Makoto Shoda
Makoto Shoda
Professor Emeritus
  • :+81-45-902-2270
  • :+81-45-902-2270

Chemical Resources Laboratory
Tokyo Institute of Technology
Japan

Education

1968-1971 Ph.D. course University of Tokyo,
Ph.D. of Biochemical Engineering
1966-1968     Master course,  University of Tokyo
1962-1966     Undergraduate course Faculty of Engineering, University of Tokyo

 

Biography

 

Research Interest

Biotechnology associated with environmental issues

Biological treatment of toxic gases
Biological treatment of colored substances like dyes
Biological treatment of high-strength ammonium

Isolation of new microorganisms for environmental issues
Microorganisms for biological pesticides
Colored substance-degrading fungus
Toxic gas-degrading microorganisms

Basic mechanism for those microbial reactions

Product identification
Gene cloning responsible for biological reactions
Genetic manipulation

Reactor kinetics, reactor design and optimum control

Effect of high magnetic fields on biological and chemical reactions
Mass production of bacterial cellulose
Calorimetry in biological reactions
Computer control of biological system

Professional Activities:

Academic career

1971-1973 Postdoctoral fellow at Waterloo University, Canada
1973-1981    Assistant Professor at Faculty of Agriculture, Nagoya University, Japan
1982-1989  Associate Professor at Chemical Resources Laboratory, Tokyo
Institute of Technology
1989-2008  Professor at Chemical Resources Laboratory, Tokyo Institute of Technology
Director at Research Laboratory of Resources Recycling Process

Academic achievement award

1998 The Best Ward for Proposal for Recycling System in Metropolitan Tokyo.
2000 40th Anniversary Award for Papers with Special Impact on Biotechnology
(John Wiley and Sons, Inc.)
2001 The Best Ward for The Takada Research Foundation, Tokyo
2006 The Best Poster Ward at IOBC/WPRS Work Shop, Belgium

 

Publications

Microbial reaction kinetics

  1. Kinetics of Product Inhibition in Alcohol Fermentation (Part 1) Batch Experiments, Masaharu Nagatani, Makoto Shoda and Shuichi Aiba, J. Ferment. Technol., 46, 241-248 (1968).
  2. Kinetics of Product Inhibition in Alcohol Fermentation, Shuichi Aiba, Makoto Shoda and Masaharu Nagatani, Biotechnol. Bioeng., 10, 845-864 (1968).
  3. Reassessment of the Product Inhibition in Alcohol Fermentation, Shuichi Aiba and Makoto Shoda, J. Ferment. Technol., 47, 790-794 (1969).
  4. Kinetics of Product Inhibition in Alcohol Fermentation -- Temperature Effect in the Sake Brewing, Shuichi Aiba, Makoto Shoda and Masaharu Nagatani, Biotechnol. Bioeng., 11, 1285-1287 (1969).
  5. Bioenergetic Analysis of Yeast Cell Growth, Shuichi Aiba and Makoto Shoda, Advances in Chemistry Series, 109, 658-661 (1972).
  6. Sucrose Inversion by Immobilized Yeast Cells in a Complete Mixing Reactor, Kiyoshi Toda and Makoto Shoda, Biotechnol. Bioeng., 17, 481-497 (1975).
  7. Growth Kinetics Based on Energetics of Methane-Utilizing Bacteria, Shiro Nagai, Makoto Shoda and Shuichi Aiba, Proceedings of the International Symposium on Microbial Growth on C1 Compounds, 221-230 (1975).
  8. Simulation of Growth of Methane-utilizing Bacteria in Batch Culture, Makoto Shoda, Shiro Nagai and Shuichi Aiba,  J. Appl. Chem. Biotechnol., 25, 305-318 (1975).
  9. Kinetics of Product Inhibition in Alcohol Fermentation, Shuichi Aiba, Makoto Shoda and Masaharu Nagatani, Biotechnology and Bioengineering Special 40th Anniversary Issue, 67, 671-690 (2000).

Monitoring of microbial reactions and microbial calorimetry

  1. Sensors and Instrumentation: Steam-Sterilizable Dissolved Oxygen Sensor and Cell Mass Sensor for On-Line Fermentation System Control,  M.Ohashi, T.Watabe, T.Ishikawa, Y.Watanabe, K.Miwa, M.Shoda, Y.Ishikawa, T.Ando, T.Shibata, T.Titunai, N.Kamiyama and Y.Oikawa, Biotech. Bioeng. Symp., 9, 103-116 (1979).
  2. Carbon Dioxide Sensor for Fermentation Systems, Makoto Shoda and Yoichi Ishikawa, Biotechnol. Bioeng., 23, 461-466 (1981).
  3. Design and Performance of a New Microcalorimetric System for Aerobic Cultivation of  Microorganisms,
  4. Yasufumi Ishikawa, Makoto Shoda and Hiromu Maruyama, Biotechnol. Bioeng., 23, 2629-2640 (1981).
  5. Microcalorimetric Study of Aerobic Growth of Escherichia coli in Batch Culture, Yasufumi Ishikawa and Makoto Shoda, Biotechnol. Bioeng., 23, 2825-2836 (1981).
  6. Calorimetric Analysis of Escherichia coli in Continuous Culture, Yasufumi Ishikawa and Makoto Shoda, Biotechnol. Bioeng., 25, 1817-1827 (1983).
  7. Monitoring and Thermochemical Analysis of Fermentation Process with a Calorimeter, Makoto Shoda and Yasufumi Ishikawa, Modelling and Control of Biotechnical Processes, Proceedings of the First IFAC Workshop, 33-40 (1983).

Reaction analysis in composting

  1. Change of Microbial Numbers during Thermophilic Composting of Activated Sludge with Reference to CO2 Evolution Rate,  Kiyohiko Nakasaki,Masayuki Sasaki,Makoto Shoda and Hiroshi Kubota, Proceedings of the International Symposium on Biological Reclamation and LandUtilization of Urban Wastes, Naples, Italy, 561-569 (1983).
  2. Rate of Composting of Dewatered Sewage Sludge in Continuously Mixed Isothermal Reactor, Phan Dinh Bach, Makoto Shoda and Hiroshi Kubota, J.Ferment.Technol., 62, 285-292 (1984).
  3. Composting Reaction Rate of Sewage Sludge in an Autothermal Packed Bed Reactor, Phan Dinh Bach, Makoto Shoda and Hiroshi Kubota, J. Ferment.Technol., 63, 271-278 (1985).
  4. Change in Microbial Numbers during Thermophilic Composting of Sewage Sludge with Reference to CO2 Evolution Rate, Kiyohiko Nakasaki, Masayuki Sasaki, Makoto Shoda and Hiroshi Kubota, Appl. Environ. Microbiol., 49, 37-41 (1985)
  5. Characteristics of Mesophilic Bacteria Isolated during Thermophilic Composting of Sewage Sludge, Kiyohiko Nakasaki, Masayuki Sasaki, Makoto Shoda and Hiroshi Kubota, Appl. Environ. Microbiol., 49, 42-45 (1985).
  6. Effect of Seeding during Thermophilic Composting of Sewage Sludge, Kiyohiko Nakasaki, Masayuki Sasaki, Makoto Shoda and Hiroshi Kubota, Appl. Environ. Microbiol., 49, 724-726 (1985).
  7. Effect of Temperature on Composting of Sewage Sludge, Kiyohiko Nakasaki,Makoto Shoda and Hiroshi Kubota, Appl.Environ.Microbiol., 50, 1526-1530 (1985).
  8. Comparison of Composting of Two Sewage Sludges, Kiyohiko Nakasaki, Makoto Shoda and Hiroshi Kubota, J. Ferment. Technol., 63, 537-543 (1985).
  9. Effect of a Bulking Agent on the Reaction Rate of Thermophilic Sewage Sludge Composting, Kiyohiko Nakasaki, Makoto Shoda and Hiroshi Kubota, J. Fermnet. Technol., 64, 539-544 (1986).
  10. Oxygen Diffusion and Microbial Activity in the Composting of Dehydrated Sewage Sludge Cakes, Kiyohiko Nakasaki,Yoshio Nakano,Tetsuo.Akiyama,Makoto Shoda and Hiroshi Kubota, J. Ferment. Technol., 65, 43-48 (1987).
  11. Thermal Balance in Composting Operations, Phan Dinh Bach,Kiyohiko Nakasaki,Makoto Shoda and Hiroshi Kubota, J.Ferment. Technol., 65, 199-209 (1987).
  12. Composting and Microbiology, Makoto Shoda, Proceedings of the Annual Meeting of Korea Solid Wastes Engineering Society (1988).
  13. Nitrogen Transformation during Thermophilic Composting, Naoyuki Morisaki, Chae Gun Phae, Kiyohiko Nakasaki, Makoto Shoda and Hiroshi Kubota, J. Ferment. Bioeng., 66, 57-61 (1989).
  14. Composting as a Promising Method to Reutilize Organic Wastes, Makoto Shoda, Proceedings of International Symposium in Seoul'89, Wastes on Reutilization and Resource Recovery (1989).   
  15. Microbial Indices and Water/Solid Interface Maturity Standards, Hiroshi Kubota and Makoto Shoda, Proceedings of International Composting Research Symposium, May 27-29, 1992, Columbus Ohio,U.S.A.

Monitoring of degradation process of organic matters

  1. Effect of Compost Maturity on Komatsuna (Brassica Rapa var. pervidis) Growth in  Neubauer's Pot, Arata Katayama,Veerapan Chanyasak, Mitsuyo F.Hirai,Satoshi Mori, Makoto Shoda and Hiroshi Kubota, Proceedings of the International Symposium on Biological Reclamation and Land Utilization of Urban Wastes, Naples, Italy, 541-550 (1983).
  2. Inhibitory Factor of Sewage Sludge Compost for Growth of Komatsuna Brassica campestris L. var. rapiferafroug, Arata Katayama, Mitsuyo Hirai, Makoto Shoda, Hiroshi Kubota and Satoshi Mori, Environment. Poll.(Series A), 38, 45-62 (1985).
  3. Application of Gel Chromatography to Monitor the Decomposition Process of Sewage Sludge in Soil, Arata Katayama, Naomi Hayasaka, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Soil Sci.Plant Nutr., 32, 211-222 (1986).
  4. Factors Affecting the Stabilization Period of Sewage Sludge in Soil with Reference to the Gel Chromatographic Pattern, Arata Katayama, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Soil Sci. Plant Nutr., 32, 383-395 (1986).
  5. High Performance Size Exclusion Chromatography of Water Extract from Sewage Sludge-Soil Mixture, Arata Katayama, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Soil Sci. Plant Nutr., 32, 479-486  (1986).
  6. Stabilization Process of Sewage Sludge Compost in Soil, Arata Katayama, Kuei-Cheng Ker, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Proceedings of a Symposium on Compost: Production, Quality and Use Organized by the Commission of the European Communities, 341-350 (1986).
  7. Stabilization Process of Sewage Sludge Compost in Soil, Arata Katayama, Kuei-Cheng Ker, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Soil Sci. Plant Ntr., 33, 123-135 (1987).
  8. Decomposition Process of Various Organic Wastes in Soil with Reference to Gel Chromatography, Arata Katayama, Maria Maida Gomez Luta, Kuei-Cheng Ker, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Soil Sci. Plant Nutr., 33, 471-486 (1987).
  9. Land Application of Shochu Distillers Wastes, Kuei-Cheng Ker, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, Soil Sci. Plant Nutr., 59, 156-163 (1988) (in Japanese).
  10. Stimulation of Methane Fermentation by Sludge Extract, Akio Ogisu, Tsutomu Ohishi and Makoto Shoda, J. Ferment. Technol., 68, 211-217 (1990) (in Japanese).
  11. Method for Monitoring the Decomposition Process in Soil of Organic Wastewaters with High Strength and Low C/N Ratio, Mitsuyo Hirai, Kuei-Cheng Ker,Tatuo Endo, Koji Fujie, Makoto Shoda and Hiroshi Kubota, Soil Sci.Plant Nutr., 36, 397-408 (1990).

Microbial removal and degradation of pollutants in water and air

Biological removal of phosphate and phenol

  1. Screening of High Phosphate Accumulating Bacteria, Makoto Shoda, Tuyoshi Ohsumi and Shigezo Udaka, Agric. Biol. Chem., 44, 319-324 (1980).
  2. Influence of Cultural Conditions on Phosphate Accumulation of Arthrobacter globiformis PAB-6, Tuyoshi Ohsumi, Makoto Shoda and Shegezo Udaka, Agric. Biol. Chem., 44, 325-331 (1980).
  3. Isolation and Properties of Phenol Utilizing Microorganisms with Special Reference to   Catechol 1,2-Oxygenase, Makoto Shoda, Kiminari Maruta and Shigezo Udaka, Agric. Biol. Chem., 44, 1841-1846 (1980).
  4. Preferential Utilization of Phenol Rather than Glucose by Trichosporon cutaneum Possessing a Partially Constitutive Catechol 1,2-Oxygenase, Makoto Shoda and Shigezo Udaka, Appl. Environ. Microbiol., 39, 1129-1133 (1980).
  5. Activity and Synthesis of β-Galactosidase in Various Lactose Utilizing Bacteria, Yasufumi Okamura, Makoto Shoda and Shigezo Udaka, Agric. Biol.Chem., 47, 1133-1134 (1983).
  6. Growth and Phosphate Uptake of a High Phosphate Accumulating Bacterium, Arthrobacter globiformis PAB-6 in Continuous Culture, Hiroaki Tamatani, Makoto Shoda and Shigezo Udaka, Biotechnol. Bioeng., 25, 1781-1788 (1983).

Removal of toxic gases (Biofilter)

  1. Removal of Hydrogen Sulfide by a Biofilter with Fibrous Peat, Nobuyuki Furusawa, Iwao Togashi, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, J. Ferment. Technol., 62, 589-594 (1984).
  2. Characterisitics of H2S Oxidizing Bacteria Inhabiting a Peat Biofilter, Atushi Wada, Makoto Shoda, Hiroshi Kubota, Takaaki Kobayashi, Yoko K.Fujimura and Hiroshi Kuraishi, J. Ferment.Technol., 64,161-167 (1986).
  3. Removal of NH3 by a Peat Biofilter without and with Nitrifier, Iwao Togashi, Masayuki Suzuki, Mitsuyo Hirai, Makoto Shoda and Hiroshi Kubota, J. Ferment.Technol., 64,425-432 (1986).
  4. Biological Removal of Organosulfur Compounds Using Peat Biofilter, Mitsuyo Hirai, Makoto Terasawa, Isao Inamura, Koichi Fujie, Makoto Shoda and Hiroshi Kubota, J. Odor Research and Eng., 19, 305-312 (1988) (in Japanese).
  5. Biological Deodorization Using Activated Carbon Fabric as a Carrier of Microorganisms Soo-Koo Lee and Makoto Shoda, J. Ferment. Bioeng., 68, 1-6 (1989).
  6. A Long-term Experiment of a Pilot-scale peat Biofilter to Remove Sulfur-containing Gases from Waste Water Treatment Plant, Liang Zhang, Masayuki Suzuki, Makoto Terasawa, Mitsuyo Hirai and Makoto Shoda,  J. Odor Research and Eng., 21, 1-9 (1990).
  7. Removal Kinetics of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Peat Biofilter, Mitsuyo Hirai, Masatoshi Ohtake and Makoto Shoda, J. Ferment. Bioeng., 70, 334-339 (1990).
  8. Removal Characteristics of Hydrogen Sulphide and Methanethiol by Thiobacillus sp. Isolated from Peat in Biological Deodorization, Kyeoung-Suk Cho, Liang Zhang, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 71, 44-49 (1991).
  9. Removal of Dimethyl Disulfide by the Peat Seeded with Night Soil Sludge, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 71, 289-291 (1991).
  10. Degradation Characteristics of Hydrogen Sulfide, Methanethiol,Dimethyl Sulfide and Dimethyl Disulfide by Thiobacillus thioparus DW44 Isolated from Peat Biofilter, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 71, 384-389 ( 1991).
  11. Removal Characteristics of Dimethyl Sulfide,Methanethiol and Hydrogen Sulfide by Hyphomicrobium sp.I55 Isolated from Peat Biofilter, Liang Zhang, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 72, 392-396 (1991).
  12. Oxidation of Dimethyl Sulfide by Pseudomonas acidovorans DMR-11 Isolated from Peat Biofilter, Liang Zhang, Isao Kuniyoshi,Mitsuyo Hirai and Makoto Shoda, Biotechnol. Letts., 13, 223-228 (1991).
  13. A New Fungus Which Degrades Hydrogen Sulfide, Methanethiol, Dimethyl Sulfide and Dimethyl Disulfide, Chae Gun Phae and Makoto Shoda, Biotechnol. Letts., 13, 375-380 (1991).
  14. Catalytic Oxidation of Hydrogen Sulfide by Air over Activated Carbon Fiber, Jong Jueng Choi, Mitsuyo Hirai and Makoto Shoda, Appl. Catalysis , 79, 241-247 (1991).
  15. A Newly Isolated Heterotrophic Bacterium,Xanthomonas sp.DY44, to Oxidize Hydrogen Sulfide to Polysulfide, Kyeoung-Suk Cho, Isao Kuniyoshi, Mitsuyo Hirai and Makoto Shoda, Biotechnol. Letts., 13, 923-928 (1991).
  16. Enhanced Removal Efficiency of Malodorous Gases in a Pilot-Scale Peat Biofilter Inoculated with Thiobacillus thioparus DW44, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 73, 46-50 (1992).
  17. Enhanced Removability of Odorous Sulfur-Containing Gases by Mixed Cultures of Purified Bacteria from Peat Biofilters, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng.,73, 219-224 (1992).  
  18. Biological Deodorization of Dimethyl Sulfide Using Different Fabrics as the Carriers of Microorganisms,
  19. Ram Sharma Tiwaree, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, Appl. Biochem. Biotech., 32, 135-148 (1992).
  20. Removal of Hydrogen Sulfide, Methanethiol and Dimethyl Sulfide by Wet Activated Carbon Fiber, Jong Jueng Choi, Mitsuyo Hirai and Makoto Shoda, Environ. Science, 5, 163-171 (1992).
  21. Degradation of Hydrogen Sulfide by Xanthomonas sp. DY44, Isolated from Peat, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, Appl. Environ. Microbiol., 58, 1183-1189 (1992).
  22. Enhanced Removal Efficiency of Malodorous Gases in a Pilot-Scale Peat Biofilter Inoculated with Thiobacillus thioparus DW44, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, Proceedings of Asia-Pacific Biochemical Engineering Conference, Yokohama, Japan, 830-832 (1992).
  23. Removal Characteristics of Dimethyl Sulfide by a Mixture of Hyphomicrobium sp. I55 and Pseudomonas acidovorans DMR-11, Liang Zhang, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 74, 174-178 (1992).
  24. Study on the Removal Mechanisms of H2S by Peat Biofilter, Liang Zhang, Mitsuyo Hirai and Makoto Shoda, J. Odor Research and Eng. 23, 222-228 (1992)(in Japanese).
  25. Investigation of Removability of Malodorous Gases from a Night Soil Treatment Plant by        Pilot-Scale Peat Biofilter Inoculated with Thiobacillus thioparus DW44, Sang-Jin Park, Kyeoung-Suk Cho, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 76, 55-59 (1993).
  26. Oxidation Characteristics of Sulfur-Containing Gases by Pure or Mixed Cultures of Bacteria Isolated from Peat and Their Application to Removal of Exhaust Gas from a Night Soil Treatment Plant, Makoto Shoda, Proceedings of 86th Annual Meeting & Exhibition, Air & Waste Management Association of U.S.A. Denver, Colorado,U.S.A., June 13-18 (1993).
  27. Treatment of Exhaust Gases from a Night Soil Treatment Plant by a Combined Deodorization System of Activated Carbon Fabric Reactor and Peat Biofilter Inoculated with Thiobacillus thioparus DW44, Sang-Jin Park, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 76, 423-426 (1993).
  28. Studies of the Oxidation Mechanism of Sulfur-Containing Gases on Wet Activated Carbon Fibre, Hiroshi Kato, Isao Kuniyoshi,Mitsuyo  Hirai and Makoto Shoda, Appl. Catalysis B:Environmental 6, 255-262 (1995).
  29. DMS Removal by Exophiala sp. MW-1, Mitsuyo Hirai, Hiroshi Katoh, Jiang Yin, Isao Kuniyoshi, and Makoto Shoda, J. Odor Research and Eng., 28, 22-29 (1997).
  30. Countermeasures for Exhaust Prevention of Organic Solvents at Print Shop I, Removal of Organic Solvents by Activated Carbon Adsorption Method, Hisato Yano and Makoto Shoda, J. Jpn. Soc. Atmos. Environ., 32, 216-222 (1997) (in Japanese).
  31. Countermeasures for Exhaust Prevention of Organic Solvents at Print Shop II, Diffusion Prevention of Organic Solvents Evaporating from Printing Presses, Hisato Yano, Yoshinobu Suzuki and Makoto Shoda,
  32. J. Jpn. Soc. Atmos. Environ., 32, 244-252 (1997) (in Japanese).
  33. Countermeasures for Exhaust Prevention of Organic Solvents at Print Shop III, Removal of Organic Solvents by Catalytic Oxidation Method, Hisato Yano and Makoto Shoda, J. Jpn. Soc. Atmos. Environ., 32, 223-230 (1997) (in Japanese).
  34. Removal of Odor Originating from Kitchen Wastewater Treatment Facilities by Activated Carbon Impregnated Iodic Acid, Hisato Yano, Shusa Hashimoto, Sotaro Yonemura and Makoto Shoda, J. Jpn. Soc. Atmos. Environ., 32, 286-295 (1997) (in Japanese).
  35. Performance Test of Deodorants by Adsorption for Hydrogen Sulfide Gas, Hisato Yano, Shusa Hashimoto, Sotaro Yonemura and Makoto Shoda, J. Jpn. Soc. Atmos. Environ., 32, 360-370 (1997) (in Japanese).
  36. Removal of Exhausted Odor from Cannery by an Absorption Method, Hisato Yano, Shusa Hashimoto, Sotaro Yonemura, Hiroshi Sato and Makoto Shoda, J. Jpn. Soc. Atmos. Environ., 32, 383-391 (1997) (in Japanese).
  37. Performance Test of Deodorants for Ammonia Gas, Hisato Yano, Shusa Hashimoto, Sotaro Yonemura, and Makoto Shoda, J. Jpn. Soc. Atmos. Environ. 33, 1-9 (1998) (in Japanese).
  38. Removal Kinetics of Ammonia by Peat Biofilter Seeded with Night Soil Sludge, Mohamad Yani, Mitsuyo Hirai and Makoto Shoda, J. Ferment. Bioeng., 85, 502-506 (1998). 
  39. Ammonia Gas Removal Characteristics Using Biofilter with Activated Carbon Fiber as a Carrier, Mohamad Yani, Mitsuyo Hirai and Makoto Shoda,  Environment. Technol., 19,709-715 (1998).
  40. Comparison of Organic and Inorganic Carriers in Removal of Hydrogen Sulfide in Biofilter, Nam-Jin Kim , Mitsuyo Hirai and Makoto Shoda, Environment. Technol.,19, 1233-1241 (1998).
  41. Selection and Substantiation of an Organic Solvents Removal Apparatus at a Print Shop by Comparative Experiments Using Activated Carbon Adsorption Method and the Catalytic Oxidation Method,  Hisato Yano and Makoto Shoda, J. Air & Waste Manag. Assoc., 49, 324-331 (1999).
  42. Comparison of Organic and Inorganic Packing Materials in the Removal of Ammonia Gas in Biofilters, Nam-Jin Kim, Mitsuyo Hirai and Makoto Shoda, J. Hazard. Mater., B72, 77-90 (2000).
  43. Microbial Removal of Nitrogen Monoxide (NO) under Aerobic Conditions, Kazumasa Okuno, Mitsuyo Hirai, Masaki Sugiyama, Keikichi Haruta and Makoto Shoda, Biotechnol. Letts., 22, 77-79 (2000).
  44. Comparative Study of Various Models of a Fixed Bed Hydrogen Sulfide Biofilter, Andrew Benedict Tengkiat, Marylou M.Uy and Makoto Shoda, Inhenyeriya, 1, 54-67 (2000).
  45. Removal Characteristics of High Load Ammonia Gas by a Biofilter Seeded with a Marine  Bacterium, Vibrio alginolyticus, Nam Jin Kim, Yasushi Sugano, Mitsuyo Hirai and Makoto Shoda, Biotechnol.Letts., 22,1295-1299 (2000).
  46. Removal of a High Load of Ammonia Gas by a Marine Bacterium, Vibrio alginolyticus, Nam-Jin Kim, Yasushi Sugano, Mitsuyo Hirai and Makoto Shoda, J. Biosci. Bioeng., 90,410-415 (2000).
  47. Enhancement of Ammonia Removal in Peat Biofilter Seeded with Enriched Nitrifying Bacteria, Mohamad Yani, Mitsuyo Hirai and Makoto Shoda, Environment. Technol.,21, 1199-1204 (2000).
  48. Evaluation of Packing Materials and Introduction of Seeing Microorganisms in Biofilter for Waste Gas Treatment, Mokoto Shoda, Proceedings of Symposium on Biofilm Process for Waste Water and Waste Gas Treatment, Pusan, Korea, (2000).
  49. Comparison of the Biological H2S Removal Characteristics among Four Inorganic Packing Materials,
  50. Mitsuyo Hirai, Manabu Kamamoto, Mohamad Yani and Makoto Shoda J. Biosci. Bioeng., 91,396-402 (2001).
  51. Comparison of the Biological NH3 Removal Characteristics among Four Inorganic Packing Materials,
  52. Mitsuyo Hirai, Manabu Kamamoto, Mohamad Yani and Makoto Shoda, J. Biosci. Bioeng., 91,428-430 (2001).
  53. Removal of a High Load of Ammonia by a Marine Bacterium, Vibrio alginolyticus in Biofilter, Nam Jin Kim and Makoto Shoda, Biotechnol.Bioprocess Eng., 7,316-322 (2002).
  54. Styrene Degradation by Pseudomonas sp. SR-5 in Biofilters with Organic and Inorganic Packing Materials, Jong Hee Jang, Mitsuyo Hirai, Makoto Shoda, Appl. Microbiol. Biotecnol., 65, 349-355 (2004).
  55. Performance of a Styrene-Degrading Biofilter Inoculated with Pseudomonas sp. SR-5, Jong Hee Jang, Mitsuyo Hirai and Makoto Shoda, J. Biosci., Bioeng., 100, 297-302 (2005).
  56. Enhancement of Styrene Removals by Pseudomonas sp. SR-5 in Mixed Culture with Benzoic Acid-Degrading Bacterium in Biofilter, Akio Iwanade, Jong Hee Jang, Mitsuyo Hirai and Makoto Shoda, Environment. Technol.,26,941-949 (2005).
  57. Effect of Shutdown on Styrene Removal in Biofilter Inoculated with Pseudomonas sp. SR-5, Jong Hee Jang, Mitsuyo Hirai and Makoto Shoda, J. Hazard. Mater. B129, 223-227 (2006).
  58. Enhancement of Styrene Removal Efficiency in Biofilter by Mixed Cultures of Pseudomonas sp. SR-5, Jong Hee Jang, Mitsuyo Hirai and Makoto Shoda, J. Biosci., Bioeng., .102, 53-59 (2006).
  59. Removal of p-Xylene with Pseudomonas sp. NBM21 in Biofilter, Euisoon Jeong,Mitsuyo Hirai and Makoto Shoda,. Biosci., Bioeng., 102, 281-287 ( 2006).
  60. Screening of Styrene Degrading Strain at Wide pH Range and its Applicability to Biofilter, Mitsuyo Hirai, Yuya Umegaki, Euisoon Jeong and Makoto Shoda, J. Japan Asso. Odor Environ.,38, 1-12 (2007).
  61. Removal of o-Xylene Using Biofilter Inoculated with Rhodococcus sp. BTO62, Euisoon Jeong, Mitsuyo Hirai and Makoto Shoda, J. Hazard. Mater., 152, 140-147 (2008).

Decolorization by a new fungus and a new peroxidase

  1. Biodegradation and Decolorization of Reactive Dye by Fungal Deco11, Chae-Gun Phae, Kwang-Wook Baek, and Makoto Shoda, J. Korean Soc. Environ. Eng., 15, 517-525 (1993).
  2. Characteristics of a Newly Isolated Fungus,Geotrichum candidum Dec 1, Which Decolorizes Various Dyes,   Seong Jun Kim, Kenichi Ishikawa, Mitsuyo Hirai and Makoto Shoda,   J. Ferment. Bioeng.,79, 601-607 (1995).
  3. Decolorization of Molasses by a New Isolate of Geotrichum candidum in a Jar Fermenter,     Seong Jun Kim and Makoto Shoda,   Biotechnol. Tech., 12, 497-499 (1998).
  4. Decolorization of Molasses and a Dye by a Newly Isolated Strain of the Fungus Geotrichum candidum Dec 1,   Seong Jun Kim and Makoto Shoda,   Biotechnol. Bioeng., 62, 114-119 (1999).
  5. Purification and Characterization of a Novel Peroxidase from Geotrichum candidum Dec 1 Involved in Decolorization of Dyes,  Seong Jun Kim and Makoto Shoda,  Appl. Environ. Microbiol., 65, 1029-1035 (1999).
  6. cDNA Cloning and Genetic Analysis of a Novel Decolorizing Enzyme, Peroxidase Gene dyp from Geotrichum candidum Dec 1, Yashishi Sugano, Katsuya Sasaki and Makoto Shoda, J. Biosci. Bioeng., 87, 411-417 (1999).
  7. Batch Decolorization of Molasses by Suspended and Immobilized Fungus of Geotrichum candidum Dec 1,   Seong Jun Kim and Makoto Shoda, J. Biosci. Bioeng., 88, 586-589 (1999).
  8. Efficient Heterologous Expression in Aspergillus oryzae of a Unique Dye-Decolorizing  Peroxidase DyP of Geotrichum candidum Dec 1,Yashishi Sugano, Ryosuke Nakanao, Katsuya Sasaki and Makoto Shoda,    Appl. Environ. Microbiol., 66, 1754-1758 (2000).
  9. Effect of Molasses on the Production and Activity of Dye-Decolorizing Peroxidase from  Geotrichum andidum Dec 1, Tae Ho Lee, Hirokazu Aoki, Yasushi Sugano and Makoto Shoda, J. Biosci. Bioeng., 89, 545-549 (2000).
  10. Characterization of Aryl Alcohol Oxidase Produced by Decolorizing Fungus, Geotrichum candidum Dec 1, Seong Jun Kim, Norikuni Suzuki, Yoshiko Unematsu and Makoto Shoda,J. Biosci. Bioeng., 91, 166-172 (2001).
  11. Efficient Production of a Heterologous Peroxidase, DyP from Geotrichum candidum Dec 1 on Solid-State Culture of Aspergillus oryzae RD005,Yasushi Sugano, Chihiro Matsuo, and Makoto ShodaJ. Biosci.Bioeng. 92,,594-597 (2001).
  12. Decolorization of Kraft Pulp Bleaching Effluent by a Newly Isolated Fungus, Geotrichum candidum Dec 1, Noboru Shintani, Yasushi Sugano, and Makoto Shoda,J. Wood Sci., 48, 402-408 (2002).   
  13. Characteristics of a Newly Isolated Fungus Geotrichum candidum Dec 1 with Broad Degradation Spectrum of Xenobiotic Compounds,Proceedings of 17th Forum for Applied Biotechnology, September 18-19, 2003, Gent,Belgium, pp.269-274.   Makoto Shoda
  14. A Unique Dye-Decolorizing Peroxidase, DyP, from Thanatephorus cucumeris Dec 1: Heterologous Expression, Crystallization and Preliminary X-ray Analysis,Takao Sato, Shusaku Hara, Takuro Matsui, Gen Sazaki, Shinya Saijo, Tadashi Ganbe, Nobuo Tanaka, Yasushi Sugano  and Makoto Shoda,Acta Crystallogr., D60,149-152 (2004).
  15. Role of H164 in a Unique Dye-Decolorizing Heme Peroxidase DyP, Yasushi Sugano, Yosuke Ishii and Makoto Shoda, Biochem. Biophys. Research Commu., 322, 126-132, (2004).
  16. Precipitation Diagram and Optimization of Crystallization Conditions at Low Ionic Strength for Deglycosylated Dye-decolorizing Peroxidase from a Basidiomycete, Shinya Saijo, Takao Sato, Nobuo Tanaka, Atsushi Ichiyanagi, Yasushi Sugano and Makoto Shoda,        Acta Cryst., F61, 729-732 (2005).
  17. Complete Decolorization of the Anthraquinone Dye Reactive blue 5 by the Concerted Action of Two eroxidases from Thanatephorus cucumeris Dec 1, Yasushi Sugano,Yuko Matsushima and Makoto Shoda,Appl. Microbiol. Biotechnol., 73, 862-871 (2006).
  18. Production of Dye-decolorizing Peroxidase (rDyP) from Complex Substrates by Repeated-batch and Fed-batch Cultures of Recombinant Aspergillus oryzae, Mozaffar Shakeri, Yasushi Sugano and Makoto Shoda, J. Biosci. Bioeng.,103, 129-134(2007).
  19. Change in Turnover Capacity of Crude Recombinant Dye-decolorizing Peroxidase (rDyP)  in Batch and Fed-batch Decolorization of Remazol Brilliant Blue R,Mozaffar Shakeri and Makoto Shoda, Appl. Microbiol. Biotechnol., 76, 919-926 (2007).
  20. DyP, a Unique Dye-decolorizing Peroxidase, Represents a Novel Heme Peroxidase  Family: Asp171 Replaces the Distal Histidine of Classical Peroxidases,Yasushi Sugano, Riichi Muramatsu, Atsushi Ichiyanagi, Takao Sato, and Makoto Shoda,J. Biol. Chem., 282, 36652-36658 (2007).
  21. Decolonization of an Anthraquinone Dye by the Recombinant Dye-decolorizing Peroxidases (rDyP) Immobilized on Mesoporous Materials, Mozaffar Shakeri and Makoto Shoda, J.Mol.Cat. B: Enzymatic 54,42-49 (2008).
  22. Efficient Dye Decolorization and Production of Dye Decolorizing Enzymes by the Basidiomycete Thantephorus cucumeris Dec 1 in a Liquid and Solid Hybrid Culture,Takuya Shimokawa, Mitsuyo Hirai, Makoto Shoda and Yasushi Sugano,J. Biosci. Bioeng., 106, 481-487 (2008).
  23. Purification and Characterization of Two DyP Isozymes from Thantephorus cucumeris Dec 1 Specifically Expressed in an Air-Membrane Surface Bioreactor,Takuya Shimokawa, Makoto Shoda and Yasushi Sugano,J. Biosci. Bioeng., 107, 113-115 (2009).
  24. Degradation Pathway of an Anthraquinone Dye Catalyzed by a Unique Peroxidase DyP from Thantephorus cucumeris Dec 1,Yasushi Sugano, Yuko Matsushima, Katsunori Tsuchiya, Hirokazu Aoki, Mitsuyo Hirai and Makoto Shoda,Biodegradation, 20, 433-440 (2009).
  25. Efficient Decolorization of an Anthraquinone Dye by Recombinant Dye-Decolorizing Peroxidase (rDyP) Immobilized in Silica Based Mesocellular Foam, Mozaffar Shakeri and Makoto Shoda, J. Mol. Cat. B:Enzymatic, 62, 277-281 (2010).
  26. Decolorization of Azo Dyes by PIP-tin-balls in Citric Acid Solution, Shizuo Nishide, Mitsuyo Hirai and Makoto Shoda J. Water and Environ.Technol., 8, 85-98 (2010).
  27. Biodegradation of Two Aromatic Amines Produced from the Decolorization of Orange II by Zero-Valence Tin, Shizuo Nishide and Makoto Shoda, J. Water and Environ. Technol., 9, 89-99 (2011).
  28. Comparative Study on the Decolorization of Orange II by Zero-valence Tin in Citric and Hydrochloric Acids, Shizuo Nishide and Makoto Shoda, Energy and Environ. Research, 2, 1-12 (2012).
  29. Decolorization of Oxygen-delignified Bleaching Effluent and Biobleaching of Oxygen-delignitied Kraft Pulp by Non-white-rot Fungus Geotrichum candidum Dec 1, Noboru Shintani  and Makoto Shoda, J. Environ. Sci., 25(Suppl.), S1-S5 (2013).

 

 

 

 

 

water-and-waste-flyer Journal Flyer