
 
ForschenSci
O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Cell, Stem cells and Regenerative Medicine
Open Access

Copyright: © 2016 Peterson SJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Volume: 2.1Short Communication

Oxidized HDL and Isoprostane Exert a Potent 
Adipogenic Effect on Stem Cells: Where in the 
Lineage?
Stephen J Peterson1#, Luca Vanella2,3#, Angelica Bialczak2#, Joseph Schragenheim2, 
Ming Li2#, Lars Bellner2#, Joseph I Shapiro3 and Nader G Abraham2,3,*,#

1Weill Cornell Medical College, Department of Medicine, New York Methodist Hospital, Brooklyn, NY 
11215, USA
2Departments of Medicine & Pharmacology, New York Medical College, Valhalla, NY 10595, USA
3Marshall University, Joan C. Edwards School of Medicine, Huntington, WV 25701, USA
#Contributed equally to this work

Received date: 23 Dec 2015; Accepted date: 21 
Apr 2016; Published date: 27 Apr 2016.

Citation: Peterson SJ, Vanella L, Bialczak A, 
Schragenheim J, Li M,  et al. (2016) Oxidized 
HDL and Isoprostane Exert a Potent Adipogenic 
Effect on Stem Cells: Where in the Lineage? Cell 
Stem Cells Regen Med 2(1): doi http://dx.doi.
org/10.16966/2472-6990.109

Copyright: © 2016 Peterson SJ, et al. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
author and source are credited.

*Corresponding authors: Nader G. Abraham, PhD, Dr. H.C., FAHA, Departments of Medicine 
& Pharmacology, New York Medical College, Valhalla, NY 10595, USA, Tel: 914 549-3121; 
E-mail: nader_abraham@nymc.edu

Stem Cell Development
The development of adipocytes in mice and humans follows a 

well-defined pathway that commences with a common pluripotent 
mesenchymal stem cell (MSC), ie., adipogenesis [1]. The early steps of 
the pathway leading to the generation and the commitment of MSCs to 
an adipocyte lineage are unknown. Hypothetically, the determination of 
the fate of MSCs occurs early in cell differentiation (“commitment”) and 
involves the interplay of intrinsic (genetic) and environmental (local and 
systemic) conditions that ultimately define the fate of the cell. Factors 
that determine MSC proliferation and differentiation also govern early 
adipocyte development and function. Currently, little is known about 
this process; from MSC-to-preadipocyte differentiation. However, 
the steps governing the transition from preadipocyte to adipocyte 
differentiation are not well defined (Figure 1). During adipogenesis MSCs 
or preadipocytes differentiate into lipid-laden adipocytes [2]. Ox-HDL 
increases adipogenic properties with a marked effect on the  last  step  of  
adipocyte-terminal  differentiation and  release of adipokines including 
20- HETE and Ang II.

MSCs were initially identified in postnatal human bone marrow 
and have been used to model differentiating mesoderm. It is believed 
that the MSCs give rise to a common early precursor (pre-adipocyte, 
Adipoblast), which, in turn, develops into the committed white and 
brown preadipocyte that under appropriate stimulatory conditions, 
differentiate into mature adipocytes of different types [3]. The transition 
from preadipocyte to adipocyte involves four stages: growth arrest, 
clonal expansion, early differentiation and terminal differentiation [4]. 
Adipocytes regulate glucose homeostasis [5] and adipocyte dysfunction 
results in the secretion of decreased levels of adiponectin and decreased 
glucose uptake, leading to insulin resistance [6].

Obesity and Ox-HDL
Obesity is also linked to the metabolic syndrome, which is associated 

with a dyslipidemic profile that includes hypertriglyceridemia and low 
plasma high-density lipoprotein cholesterol (HDL-C). Accumulated 
evidence suggests that HDL enhancement plays a beneficial role in 
maintaining glucose homeostasis via insulin dependent and independent 
pathways. Low Density Lipoprotein Cholesterol (LDL-C) and HDL-C 
levels have become the accepted biomarkers in the evaluation of the risk 
of CVD, CAD, and even CKD [7,8]. Recent studies have suggested 
that HDL function is more important than total levels of HDL and that 

remodeling and dysfunction likely contribute to increased risk of CVD, 
CKD, and CRS.

High fat diets increase LDL and glucose levels [9] which are both 
reversed by an increased expression of the antioxidant gene, heme 
oxygenase (HO-1). In another model of high fat (HF) diets in hypertensive 
rats, LDL is increased and this is prevented by induction of HO-1 by a 
number of cobalt compounds including cobalt protoporphyrin [10]. 
Similar observations are described for male and female mice [11]. These 
observations are attributed to increases in ROS in adipose tissue and 
liver that may involve increases in Ang II and 20- HETE, which are 
major sources of ROS [12]. Deletion of angiotensinogen in hepatocytes 
markedly decreased blood pressure [13]. Angiotensinogen has been 
synthesized by 3T3- F442A cells and hydrolyzed to ANG l and ANG 
II in adipocytes [14], and its deletion from adipose tissue resulted 
in a decrease in blood pressure elevation in obese mice [15]. In 
another study, increases in antioxidants decrease the Ang II-mediated 
increase in ROS [16- 18]. These reports suggest that targeting the Ang II 
system may have therapeutic value. The increase in ROS is considered a 
contributing factor in Ox-LDL [19] in contrast to an increase of HO-
1, which inhibits atherogenesis [20] and atherosclerotic lesion in LDL 
receptor (-/-) mice [21], reviewed in [22].

Dysfunctional HDL can result from both free radical attack and 
oxidation of ‘good’ HDL, leading to Ox-HDL (‘bad’ HDL) [23-25]. 
Lipids and lipoproteins are the primary targets of free radical damage 
[26], which results in lity and CVD and cardiac events.

Process of MSCs differentiation to Adipocytes
HO-1 effect Plasma LDL and HDL

We believe that levels of antioxidants will change the ratio of LDL and 
HDL in mice. As shown in figure 2A and 2B, the ratios of plasma LDL 
and HDL is significantly higher in obese mice than in lean mice (0.41 
+ 0.15 vs 0.05 + 0.02, *p<0.05). An increase of HO-1 and antioxidant 
properties [12,39] by CoPP decreased the ratio (0.15 + 0.01 vs 0.41 + 
0.15, *p<0.05). Inhibition of HO-1 and increase of antioxidant by SnMP 
blocked the effect of CoPP on obese mice.

The Effect of Ox-HDL and Isoprostanes on Adipogenesis
We examined the levels of LDL to HDL in mice treated with CoPP, which 

increases HO-1-derived bilirubin levels. Since obesity is associated with a 
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Figure 1: Schematic presentation of MSCs giving rise to adipocyte differentiation.
MSCs can differentiate into adipocytes when placed in the adipogenesis medium in vitro. Various adipokines including Ang II, Leptin, TGFβ, VEGF, FGF, 
HGF, TNF, Adiponectin, MMP-2, MMP-9 and IGF-1 are secreted from adipocytes. Particular molecular events accompanying each stage of differentiation 
are indicated to the right, with the imprecise interval in each stage reflected as indicated.

Figure 2A: HO-1 decrease ratios of LDL/HDL in obese mice treated with CoPP, obese mice display high levels of LDL, while treatment with CoPP, 
for 4 weeks decrease LDL, that is reversed by inhibition of antioxidant HO-1
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Figures 3: Adipogenic effect of oxidized HDL and isoprostane on MSC-derived adipocytes. Adipogenesis from human MSC was detected by Oil Red 
O staining and absorbance was measured as described [37,39]. *p<0.05 versus control.

Figure 2B: HO-1 decreases ratios of LDL/HDL in obese mice treated with CoPP, obese mice display high levels of LDL, while treatment with CoPP, 
for 4 weeks decreases LDL, that is reversed by inhibition of antioxidant HO-1.
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Figure 4: Schematic representing the increase in ROS by high fat, glucose or excessive heme levels that in turn increase the generation of oxidized 
HDL and isoprostane. Enlargement of adipocytes causes alterations in the secretion of adipokines. Increased adipocyte size can lead to deleterious 
alterations in insulin sensitivity caused by a decrease in adiponectin secretion and the induction of inflammatory mediators.

decrease of antioxidants, we propose that this will result in an increase in 
levels of Ox-HDL as Ox-HDL is increased in cardiac events. We examined 
the effect of Ox-HDL and isoprostanes on adipogenesis in the human 
adipocyte by measuring Oil Red O stained lipid droplet area after 10 
days of treatment (Figure 3). The level of Oil Red O stained lipid droplets 
increased after treatment with Ox- HDL, isoprostanes, and a combination 
of the two. Quantification of Oil Red O stained cells showed an increase in 
lipid droplets in the presence of both Ox-HDL and isoprostanes compared 
with control p<0.05 and Ox-HDL. This effect proved to be synergistic, 
p<0.05 (Figure 3). These results were confirmed in mice (results not shown).

Figure 4 is a schematic that shows the release of the inflammatory 
cytokines IL-6, and TNF and ROS. ROS increases lipid peroxidation 
with increased levels of Ox-HDL, LDL and isoprostane. Excess heme, 
needed for adipocyte differentiation and terminal differentiation, also 
increases ROS. Hyperglycemia in the obese will also increase the levels of 
ROS (Reviewed in [12]). With the down regulation of HO-1 in obesity, 
heme catabolism is decreased. ROS targeting adipocyte stem cells and 
hypertrophy occurs in several animal models of obesity which leads to an 
increase of inflammatory adipokines, a decrease in adiponectin, liver and 
muscle fat deposit and insulin resistance.

This review demonstrates that Ox-HDL and isoprostane exert marked 
increases in adipogenesis in human adipocyte stem cells. Ox-HDL is 
associated with an increase in adipocyte expansion and adiposity and, as 
such, is a determinant of obesity and its related disorders. There are several 
ways in which Ox-HDL can be formed. One way is during the process of 
differentiating adipocytes. This process begins with a high food intake, 
early hyperglycemia occurs resulting in an increase in cellular heme due to 

a decrease in the levels of HO-1 (reviewed in [12]). Heme is a pro-oxidant 
and a source of ROS which contribute to an increase in NO uncoupling 
by iNOS induction. The induction of iNOS causes the formation of 
peroxynitrite which is responsible for lipid peroxidation and inhibition 
of protein and enzyme function and increased Ox-HDL levels. A prime 
example is a decrease in the levels of HO-1 which, in turn, decreases 
bilirubin levels. Bilirubin is a potent antioxidant and patients with elevated 
bilirubin levels display a lower risk of cardiovascular disease and have 
higher levels of HDL (reviewed in [31]).

There are a number of mechanisms by which obesity increases the levels 
of Ox- HDL. These occur during the process of differentiating adipocytes 
that requires glucose, which is a major source of ROS. Furthermore, 
myeloperoxidase is responsible for generating excessive levels of ROS [32] 
with a resultant increase in lipid peroxidation which converts LDL and 
HDL to oxidized products with an expansion of adipogenesis.

We and others have shown that an excess of heme in adipocyte stem 
cells and in the fat of obese mice is necessary in order for adiposity [11,33-37]. 
Therefore, increased heme levels in obese subjects, is a major source of 
ROS, contributing to lipid peroxidation and production of Ox-HDL and 
Ox-LDL. Additionally, hemoglobin influences LDL and HDL in obesity 
and diabetes. Hemoglobin increases the levels of proinflammatory HDL, 
in other words, increases the oxidation of HDL. We believe that HDL 
dysfunction is not the cause of adipogenesis, but it is the oxidation of the 
HDL itself [38].

Obesity is a growing epidemic in the United States as well as worldwide. 
Many of the cardiovascular complications associated with obesity are, in 
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part, due to dysfunctional adipocytes and endothelial damage. Several 
clinical conditions such as diabetes mellitus and obesity, are characterized 
by both increased inflammation and oxidative stress, and are associated 
with increased risk of cardiovascular complications. An increase in Ox-
HDL negatively correlated with adiponectin levels in morbidly obese 
subjects (unpublished data). Thus, HDL and Ox-HDL may prove of 
particular relevance, in the maintenance and regulation of cardiovascular 
health and as targets for the prevention of cardiovascular events.

In conclusion, this communication suggests that the novel finding 
that Ox-HDL and isoprostane act at the three points presented in figure 
1, and that it appears that Ox-HDL enhances adipogenesis and/or the 
recruitment of stem cells in adipose tissue, and increases the adipogenic 
lineage and exacerbates obesity and the metabolic syndrome. In support 
of this conclusion, isoprostane , another oxidant found in the plasma of 
obese subjects increases adipogenesis and, with Ox-HDL, synergistically 
increases adipocyte stem cell proliferation, differentiation and hypertrophy. 
Thus Ox-HDL function, due to its adipogenic effect on adipocyte stem 
cells, should be re- evaluated to address the metabolic derangements 
associated with the metabolic syndrome.
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