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Obesity and type 2 diabetes (T2D) comprise a growing global burden 
on healthcare and financial resources, particularly as a function of the 
Westernization of diets and reduced activity levels across the world. 
The mitochondria within our cells are the end users of products of the 
metabolism of nutrients that we consume in order to meet our energetic 
demands and thus may represent a viable target for the prevention and 
treatment of these and other cardiometabolic diseases. In addition to their 
role as energy producers, mitochondria are also a potent source of reactive 
oxygen species (ROS), an unavoidable byproduct of aerobic metabolism. 
Chronic exposure to excessive ROS in amounts that overwhelm the 
antioxidant capacity may result in the oxidation of nearby lipids, 
proteins, and nucleic acids, damaging these cellular components in the 
mitochondria and surrounding tissues [1]. Accumulation of this oxidative 
stress has been linked to obesity, insulin resistance (IR), and T2D [2]. In 
order to meet the demands of both chronic and acute metabolic challenges 
and to prevent excessive ROS production, a number of adaptations to 
mitochondrial physiology and morphology can occur [3].

Acute metabolic challenges such as elevated insulin and overnutrition 
create conditions that can promote the production of excessive ROS [4,5]. 
Hyperglycemia (due to IR/glucose intolerance) also promotes excessive 
ROS production [6]. ROS produced may play a critical signaling role 
in adaptations to mitochondrial structure and function to respond to 
metabolic stress [7,8] and limit excessive ROS production. The uncoupling 
of mitochondrial oxygen consumption from ATP production induced by 
ROS is thought to be one mechanism that can decrease ROS production in 
the presence of an elevated substrate load [9-12]. Studies in rodent models 
have indicated mitochondrial respiratory kinetics favor more uncoupled 
respiration in response to ROS produced following an acute high-dose 
iron exposure, likely in an effort to prevent or limit oxidative damage [13]. 
Additionally, we have recently shown that following a hyperinsulinemic-
euglycemic clamp, ROS production is elevated and mitochondrial 
coupling is decreased in human skeletal muscle mitochondria measured 
in permeabilized myofibers from healthy premenopausal women [14]. 
While uncoupled respiration is thought to reduce ROS production, it 
should be noted that if mitochondrial respiration is chronically uncoupled, 
this will severely restrict ATP availability when inevitably presented with a 
new energetic demand. This appears to require that mitochondria exhibit 
some level of flexibility to shift between a coupled and uncoupled state in 
order to adapt to the present metabolic environment.

 A number of mitochondrial adaptations are known to occur following 
more chronic metabolic stimuli. The “chronic” metabolic condition of 
obesity is often associated with mitochondrial dysfunction and oxidative 
stress [15], perhaps reflecting a detrimental adaptation or a loss of 
plasticity. Many studies in obese persons report a lower mitochondrial 

oxidative capacity [16,17] and impairment in the flexibility to adapt to a 
given substrate [18]. In contrast, a number of in vivo methods for assessing 
mitochondrial function have indicated an enhanced capacity for fatty acid 
(FA) oxidation in obese persons [19-21]. In support of these findings, we 
have recently published work that describes a positive relationship between 
FA oxidative capacity at the level of the skeletal muscle mitochondria and 
body fat in a cohort of lean to obese women [22]. These data suggest 
that the increased FA oxidation observed in obese persons using in vivo 
methods reflects an adaptation at the mitochondrial level to utilize excess 
FA substrate, though this phenotype has been shown to become impaired 
once body mass index (BMI) surpasses 40 kg/m2 [23]. Additionally, we 
found that mitochondrial coupling was positively associated with body fat, 
a phenotype that may promote continued fat accumulation in the context 
of chronically elevated FA substrate due to obesity. Numerous studies have 
also described the beneficial adaptations to an exercise program. Exercise 
promotes the expression of peroxisome proliferator-activated receptor-γ 
coactivator-1α (PGC1 α) [24], a key protein involved in mitochondrial 
biogenesis [25], function [26], and dynamics [25,27], thus regulating 
mitochondrial quality. In an aging population, twelve weeks of moderate 
intensity aerobic training was sufficient to enhance electron transport and 
mitochondrial content [28]. Various chronic metabolic stressors can also 
have tissue-specific effects. Rodent models suggest liver mitochondria 
adapt to chronic alcohol consumption [29] and chronic hypoxia induced 
decreases in mitochondrial respiration in cardiac muscle [30].

Skeletal muscle mitochondrial dysfunction and ROS production 
are thought to be important mediators in the onset and exacerbation 
of IR and T2D and other chronic diseases. Others have previously 
hypothesized that sufficient mitochondrial plasticity to respond both 
rapidly and adequately to meet a metabolic demand may be a mechanism 
to regulate ROS production [31] and thus disease onset and progression. 
We speculate that if individuals with obesity and T2D do not display the 
necessary mitochondrial plasticity to prevent excessive ROS production 
promoted by a metabolic insult, it may lead to oxidative damage, disease 
progression, and further complications. Given the role of mitochondria 
in both the production of energy and ROS and the hypotheses linking 
ROS and oxidative damage to IR, we suspect that maintaining or restoring 
mitochondrial plasticity to meet acute and chronic metabolic demands 
warrant further investigation as a potential target for the treatment 
and prevention of obesity, T2D, and other chronic diseases linked to 
mitochondria dysfunction and oxidative stress. 

Future studies should seek to evaluate acute mitochondrial plasticity in 
the context of various metabolic conditions in human, animal, and cellular 
models to determine if a loss of plasticity contributes to the onset of disease. 
For instance, characterizing acute changes in mitochondrial function in 

 ISSN 2380-5528 

http://dx.doi.org/10.16966/2380-5528.133


 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Warren JL, Fisher G (2017) Acute and Chronic Regulation of Mitochondrial Function and Cardiometabolic Disease Risk. Obes Open Access 4(1): 
doi http://dx.doi.org/10.16966/2380-5528.133

Open Access

2

patients with T2D in response to a meal challenge or determining whether 
an exercise intervention can restore acute mitochondrial plasticity 
would provide insight into the acute responses of the mitochondria in 
the population but also determine whether these acute response can be 
altered by exercise training. These types of studies will move forward 
from simply looking at overall changes in mitochondrial oxidative 
capacity and lend insight into changes in efficiency, ROS emission, and 
mitophagy. Additionally, novel uncoupling agents are currently under 
investigation for use in the prevention and treatment of cardiometabolic 
diseases [32]. However, given that ROS production has been shown to 
be associated with insulin secretion and insulin signaling [33], it will 
be important to determine if these agents will present with deleterious 
side effects. We believe that future studies need to be conducted that 
characterize mitochondrial responses to metabolic stressors in order to 
better understand how mitochondria adapt under different situations. 
These endeavors will not be without challenges as both samples and direct 
methods for obtaining measures of oxidative phosphorylation capacity 
and efficiency require considerable resources and time.

Disclosure: The authors have no conflicts of interest to disclose.
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