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Abstract
Hericium erinaceus (H.E.) is a well-known edible and folk medicinal fungi in Japan, China and other Asian countries without harmful effects. It has 
been recognized that this unique mushroom is capable of keeping the brain healthy, supporting the immune system to help prevent gastric cancer 
and other diseases, boosting mood and concentration, decreasing inflammatory processes in the body. But more scientific researchers are needed 
to confirm its nutritional and medicinal effects. In the present study, we investigated the effects of Hericium erinaceus mycelium (H.E. mycelium) 
against 1-methyl-4-phenylpyridinium(MPP+)-induced neurotoxicity in PC12 cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced 
Parkinsonian mice. In the cell viability results, treatment with H.E.mycelium increased the cell viability in MPP+-treated cells and induced antioxidant 
activity in PC12 cells. H.E. mycelium also reduced MPTP-induced loss of dopamine concentration level and tyrosine hydroxylase (TH) positive cells in 
mice. Our results suggest that H.E.mycelium performs significant protection of dopaminergic neuron under severe conditions and is very effective in 
the treatment of damaged neuron in the brain to recover in the case of Parkinson’s disease.

Practical applications: In this article, we provide science-based evidence related to H.E.mycelium to be a potential effective material for the 
treatment and prevention of Parkinson’s disease.

Keywords: Hericium erinaceus mycelium; Dopamine; Neuroprotective; Parkinson’s disease; Tyrosine hydroxylase

Introduction
Parkinson’s disease (PD) is one of the most common progressive 

neurodegenerative disease that is characterized by the loss of 
dopaminergic neurons in the Substantia Nigra par compacta (SNpc) 
region of the brain [1], which results in motor problems including 
bradykinesia, akinesia, muscular rigidity, resting tremor, and postural 
instability [2]. In the disease model of PD, the involvement of the 
drug 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), 
is most widely used among animal models of Parkinson’s disease 
[3]. The MPTP is metabolized into the toxic cation 1-methyl-4-
phenylpyridinium ion (MPP+) by the enzyme monoamine oxidase 
B, which causes the neurotoxic effect to impair the dopaminergic 
nigrostriatal neurons [4].

Hericium erinaceus (H.E.) a well reputed edible mushroom, also 
known as monkey head mushroom in Chinese, Yamabushitake 
in Japanese or Lion’s mane mushroom in English, has been widely 
reported to use as food and folk medicine in Japan, [5] China and 
other Asian countries without harmful effects [6]. Several evidences 
demonstrated that it possesses a wide range of benefits, such as 

anticancer [7,8], antimicrobial [9], antioxidant [10], anti aging 
[11], anti-hyperglycemic [12], anti-hyperlipidemic activity [13], 
gastroprotective [14], immunomodulating and neuroprotective 
activity (Alzheimer’s Disease and Parkinson’s Disease) [15-17], 
protection of neuropathic pain [18], depressive symptoms [19] and 
presbycusis [20].

As the mycelium is inoculated in grain spawn, lion’s mane 
mushroom grows in large snowball-like formations, which is called 
the fruiting body. Hericenones, the benzyl alcohol derivatives 
with simple fatty acids, only exist in the fruiting body. A group of 
erinacines (erinacines A-K and P-S) which are diterpenoid derivatives 
have been identified only from the mycelium, and erinacine A is 
most rich in the mycelium [21]. It was demonstrated that eight of 
erinacines (A-I) could enhance nerve growth factor (NGF) release 
[21] and the erinacenes are more potent inducers of NGF synthesis 
than hericenones. They not only have an enhancing effect on NGF 
synthesis in astroglial cells in vitro but also can increase both NGF and 
catecholamine content in the hippocampus of rats [11]. The increased 
amount of NGF, in turn, enhances neuronal survival in different brain 
regions and substantially improves animal behavioral activity.
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mycelium is the concentration of H.E. mycelium required to inhibit 
50% of the DPPH free radical. Likewise, the IC50 value of Ganoderma 
lucidum was so defined. The percent inhibition of DPPH free radical 
by a test sample calculated by using the following formula:

% of inhibition = [(dc-dt)/dc] × 100

Where dc was the absorbance of control reaction and dt was the 
absorbance in presence of test or standard sample.

Animals and treatment
Adult male C57BL/6 Narl mice weighing 20-30 g (8-12 weeks old) 

were purchased from the National Laboratory Animal Center (Taipei, 
Taiwan) and used in this study. Mice were kept at constant room 
temperature (20-22°C) and humidity (50%-70%) with a 12 h light/
dark cycle (7:00-19:00) in the Animal Centers of the National Yang-
Ming University, Taiwan. Standard diet and water were available Ad 
libitum during the experiment. The care of animals was carried out in 
accordance with institutional and international standards (Principles 
of Laboratory Animal Care, NIH); and all experiments were approved 
by the Institutional Animal Care and Use Committees of the National 
Yang-Ming University, Taiwan (IACUC No. 1050306). All studies 
involving animals were conducted in accordance with the ARRIVE 
guidelines [22,23].

Five groups (fifteen mice in each group) were randomly assigned 
to a control group (saline, i.p.) plus H2O (p.o.), MPTP group (20 mg/
kg, i.p; Tokyo chemical Industry, TCI) plus H2O (p.o.) and MPTP (20 
mg/kg, i.p.) plus H.E. mycelium groups (0.1 g/kg, 0.3 g/kg and 1 g/kg., 
p.o.). Mice were received intraperitoneal injection of saline or MPTP 
once a day in the beginning 5 consecutive days and oral administration 
of H2O or H.E. mycelium in the duration of 30-day period. The control 
group of animal received an equivalent volume of saline. The animals 
were sacrificed 30 days after the last treatment of five groups and 
then brains were dissected to the left and right cerebrum. The right 
cerebrum was removed to determine immunohistochemistry for 
tyrosine hydroxylase and the left cerebrum of striatum was rapidly 
removed to determine concentration of dopamine neurotransmitter.

Determination of the concentration of dopamine 
neurotransmitter

The mice were sacrificed under pentobarbital after completion of 
the treatment. The left cerebrum of striatum was quickly removed and 
homogenized in a stock solution containing 0.1 M HClO4, 0.1 mM 
EDTA, 0.1 mM Na2S2O5 and centrifuged at 13,000 rpm for 10 min 
at 4°C. The supernatant was harvested, filtered with 0.45 µm pore-
size filters, and reserved at -80°C until analysis. The concentration 
of dopamine was determined by using High-Performance Liquid 
Chromatography (HPLC) with electrochemical detection.

High-performance liquid chromatography assay for 
neurotransmitter

HPLC electrochemical detection was performed to quantify the 
concentration of dopamine. The HPLC system consisted of a pump 
(BAS PM-92E; Bioanalytical Systems, West Lafayette, IN, USA), 
a refrigerated microsampler (CMA/200) and a sample injector 
(CMA/240) with a 20 µL loop (CMA, Stockholm, Sweden), and a 
digital amperometric electrochemical detector (Decade II; Antec 
Leyden BV, Zoeterwoude, The Netherlands). For the determination 
of the dopamine concentration, 15 µL samples were injected into 
the HPLC system. The mobile phase consisted of 0.74 mM sodium-
1-Octanesulfaoate (SOS), 100 mM phosphate sodium salt, 0.027 mM 
EDTA, 2 mMKCl, 125 mL methanol, which was delivered at a flow 

The aim of this present study was to explore the neuro protective 
effects of Hericium erinaceus mycelium (H.E. mycelium) using 
MPP+-treated PC12 cells or MPTP-induced PD mouse model that 
is associated with protection against loss of the neurotransmitter or 
dopaminergic neuron in vitro and in vivo.

Materials and Methods
Preparation of Hericium erinaceus mycelium (H.E. 
mycelium)

H.E. mycelium powder (mesh size#100, RH6408) were obtained 
from FUNGUS BIOTECH, Co. Ltd. Yilan, Taiwan, where toxin-free 
and pesticide-free of Hericium erinaceus solid state fermentation was 
exercised and the mycelium was collected afterward and dried to 
the moisture content of less than 7%. The H.E. mycelium yellowish 
powder was then further grinded into smaller particles through a 
spiral jet mill (OM2 micronizer, Sturtevant Inc. Hanover, MA 
USA) to induce the cell wall-broken effect with a particle size 
distribution of D75<50 µm at FORMOSAN NANO BIOLOGY 
Co. Ltd, Taichung, Taiwan. The cell wall-breaking technology greatly 
contributed to the increased release rate of active ingredients from the 
fine H.E. Mycelium particle powder.

Cell viability
The MTS assay is a colorimetric method and usually used to assess 

cell proliferation, cell viability and cytotoxicity. Its protocol is based 
on the reduction of the MTS tetrazolium compound by viable cells to 
generate a colored formazan dye that is soluble in cell culture media. 
PC12 cell is a cell line derived from a phenochromocytoma of the 
rat adrenal medulla and was used in this study. The PC12cells were 
maintained at 3*104cells /well in 96 wells plate with 100 µL of DMEM 
at 37°C in an incubator containing 5% carbon dioxide for 24 h. Briefly, 
after cells had attached, cells were treated with MPP+ for 72 h in the 
presence of ethanol extracts of test samples which was in 0.4% DMSO 
(Dimethyl Sulfoxide) solution. Afterward, MTS solution was added to 
each cell well and made it into a colored solution. The whole process 
was performed triplicate. The absorbance of the colored solution 
in each cell was measured at 570 nm using a microplate reader. To 
assess the neuroprotective effects of H.E. mycelium on the PC12 cells 
with MPP+-induced toxicity, the cells were treated with different 
concentration of H.E. mycelium at 8, 40, 200, 1000 µg/mL, respectively, 
and different concentrations of Ganoderma lucidum (Reishi) at 8, 40, 
200, 1000 µg/mL, respectively, with addition of 10 mM MPP+ solution 
to reach the final concentration of 1 mM MPP+ in the cell. Cell viability 
was assessed 72 h later by measuring the absorbance of the colored 
solution. The survival rate of the control group was normalized as the 
basis for that of the other groups to compare and calculate.

DPPH scavenging assay
The free radical scavenging activity of the tested extract was 

performed by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) which 
was at 0.1 mM Methanol solution. The extract fractions at different 
concentrations were prepared with distilled water/ethanol (50:50). 
The antioxidant standard compound, ascorbic acid, at 1 mg/mL was 
used as positive standard for the comparison purpose. A fresh stock 
solution of the standard compound was prepared before each analysis. 
The absorbance changes in color from deep purple to light yellow at 
517 nm were measured by using a spectrophotometer after 30 min of 
reaction. The solution of DPPH at 0.1 mM was used as a control.

To express the radical scavenging activity, the IC50 parameter was 
employed and it is defined as the concentration of substrate that 
brings about 50% loss of the DPPH free radical. The IC50 value of H.E. 
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rate of 500 µL/min. A reversed-phase C-18 column (100 × 4.6 mm, 
2.6 µm) was used for sample separation. The applied potential of 
the glassy carbon electrode was 650 mV to the reference electrode 
(Ag/AgCl), and the range setting was 5 nA for the determination 
of neurotransmitters. The data acquisition and analysis were 
performed using EZChrom software (Scientific Software, San 
Ramon, CA, USA).

Immunohistochemistry (IHC) for Tyrosine Hydroxylase 
(TH) in mouse brain

For measuring tyrosine hydroxylase immunohistochemistry, the 
mice were anesthetized with pentobarbital after completion of the 
treatment. The right cerebrum was removed and soaked at 4°C in the 
paraformaldehyde (PFA) alone, and maintained in 30% sucrose at 4°C 
until they sank. The cerebrum was sectioned at 10 µm. All sections 
were stained for tyrosine hydroxylase measurements.

Data analysis and statistical assessment
Data were expressed as the mean ± SEM. Analysis of variance was 

used to access the statistical significance for repeated measures of the 
data, and the differences among the individual mean values in different 
groups were analyzed by ANOVA followed by the Newman-Keuls test. 
The differences were considered to be significant at p<0.05.

Results
DPPH scavenging activity (antioxidant activity)

The DPPH radical scavenging assay was determined 
spectrophotometrically. The radical scavenging capacities of the 
tested extract were performed by DPPH assay and results were shown 
in figure 1. DPPH assay was one of the most widely and commonly 
used methods for screening antioxidant activity of plant or mushroom 
extracts. In the figure 1, DPPH scavenging activities of H.E. mycelium, 
and reference antioxidants capacities of Ganoderma lucidum (Reishi) 
obtained from FUNGUS BIOTECH, Co. Ltd., Yilan, Taiwan and 
ascorbic acid were analyzed in this study. The concentrations of H.E. 
mycelium at the range of 62.5 and 1000 µg/mL exhibited positive 
DPPH scavenging activities in a concentration-dependent manner as 
had shown in figure 1. The higher the concentration of H.E. mycelium 
at, the more the DPPH radical scavenging activity. As compared, 
Ganoderma lucidum showed a relatively lower radical scavenging 
effect than H.E. mycelium. The radical scavenging effect of the H.E. 
mycelium can also be observed by comparing IC50 value. A lower IC50 
value indicates a higher antioxidant activity. The IC50 value of the H.E. 

mycelium was 217.2 µg/mL, compared to that of Ganoderma lucidum with 
550.4 µg/mL. It indicated H.E. mycelium had a better radical scavenging 
effect than Ganoderma lucidum. Overall, these findings support that H.E. 
mycelium exerted a good antioxidant activity in PC12 cells.

H.E. mycelium protected MPP+- induced neurotoxicity in 
PC12 cell

The protective ability of H.E. mycelium from the cytotoxicity of 
MPP+ in PC12 cells was measured by using the MTS assay. The results 
of the measurement, as shown in figure 2, revealed the decrease of cell 
viability of PC12 cells after exposure to 1 mM MPP+ for 72 h. In the 
presence of 1 mM MPP+, H.E. mycelium at the concentration range 
of 40, 200 and 1000 µg/mL showed a statistically significant protective 

 
Figure 1: DPPH (1-Diphenyl-2-picrylhydrazyl) scavenging effect of H.E. 
mycelium and Ganoderma lucidum. Ascorbic acid (Vitamin C) was 
used as positive control. Data are presented as means ± SEM.

Figure 2: H.E. mycelium protected MPP+ induced neurotoxicity in 
PC12 cells. PC12 cells were treated with H.E. mycelium or Ganoderma 
lucidum with MPP+. Cell viability was measured by MTS assay. Data 
are presented as means ± SEM. One way ANOVA and Newman-Keuls 
tests were used to analyze the data. *P<0.05; **p<0.01; ***p<0.001 
compared to 0.4% DMSO with 1 mM MPP+.

 

 

Figure 3: H.E. mycelium prevented MPTP-induced level of dopamine 
concentration. H.E. mycelium (0.1, 0.3 and 1 g/kg) and MPTP on the 
concentration of dopamine level in striatum. Data are presented as 
means ± SEM (n=10-15). One way ANOVA and Newman-Keuls tests 
were used to analyze the data. **p<0.01; ***p<0.001 compared to 
when compared with control; ##P<0.01 when compared to MPTP.
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effect in a concentration dependent manner. A high concentration 
exerted a better neuroprotective effect. But, Ganoderma lucidum 
showed a significant protective effect in the PC12 cells only at high 
concentration of 1000 µg/mL, as shown in figure 2. It can be concluded 
that H.E. mycelium exerted a very good protective effect against the 
MPP+ neurotoxicity in PC 12 cells.

H.E. mycelium prevented MPTP-induced reduction of 
dopaminergic neuron

The protective effect of H.E. mycelium against MPTP-induced toxic 
damage on dopaminergic neuron can be interpreted by looking at the 
reduction of decreased dopamine level in the striatum of the brain after 
H.E. mycelium treatment. The dopamine concentration was measured 
by using HPLC. From figure 3, one can recognize that five injections 
of MPTP (20 mg/kg, i.p.) reduced to about 46% of dopamine level of 
striatum in mice, compared to the control group. As expected, the 
oral administration of H.E. mycelium at 0.3 and 1 g/kg increased the 
dopamine level to 56% and 79%, respectively, which indicated that the 
protective effect of H.E. mycelium was 20% and 70% at 0.3 and 1.0 g/
kg, respectively, as compared to the MPTP group [24]. These results 
demonstrated that H.E. mycelium exerted the protective effect against 
the MPTP-induced dopamine neuron damage.

H.E. mycelium prevented MPTP-induced death of tyrosine 
hydroxylase(TH)-positive neuron in striatum in mice

The enzyme tyrosine hydroxylase (TH) converts the amino acid 
L-tyrosine into 3,4-dihydroxyphenylalanine (L-DOPA) which then 
converts to dopamine by decarboxylation and then norepinephrine 
and epinephrine are produced in series in the pathway in both central 
and peripheral nervous systems [25]. The biosynthetic of dopamine 
pathway is illustrated in figure 4. Therefore, the activity of tyrosine 
hydroxylase can influence the dopamine level of striatum in brain 
tissue and the reduction of tyrosine hydroxylase activity represents 
the damage of dopaminergic neurons in the brain. Figure 5 shows a 
large number of TH-positive cells in the control group and MPTP 
caused 63% reduction in TH-positive cells in mice compared with 
the control group. After treatment of H.E. mycelium at 0.1, 0.3 and 

1 g/kg in the MPTP-induced mice, it improved the TH density in the 
substantia nigra area of the brain by 18%, 78% and 100% at these three 
concentrations respectively, compared with the MPTP damage group. 
These findings confirmed that H.E. mycelium exerted protection from 
MPTP-induced death of TH-positive neurons in corpus striatum of mice.

Discussion
In this present study we demonstrates that the neuroprotective 

effect of H.E. mycelium against MPP+-induced toxicity in neuronal 
PC12 cell lines and MPTP-induced striatal dopamine neuron damage 
in mice model. Our data strongly suggests that H.E. mycelium intake 
could be a potential treatment of PD (Parkinson’s disease).

Parkinson’s disease (PD) is characterized by a progressive 
degeneration of dopaminergic neurons in the substantia nigra pars 
compacta (SNpc) region of the brain [1], and N-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) has been widely used to induce 
PD in the animal model. MPTP induces PD through the death of 
dopaminergic cell by its active metabolite, 1-methyl-4-phenyl-2,3,-
dihydropyridinium (MPP+) [3]. By using MPP+ in PC12 cells, as a 
cellular model of PD, we have elucidated the role of H.E. mycelium in 
modulating and reducing the loss of dopaminergic neurons. In the PC12 
cell viability experiment, H.E. mycelium exhibited positive protective 
effect to dopamine neuron in mice which represents the similar 
neuroprotective properties in dopamine neurons to human PD [26,27]. 
Numerous studies have shown that MPP+-induces neurotoxicity in 
cell and zebrafish [28], and induces loss of dopaminergic neurons [29-
31]. Administration of MPP+ (1 mM) induced cell death in PC12 cells 
is in consistent with several previous studies. MPP+-induced loss of 
dopaminergic neurons indicates the selective damage to dopamine 
neurons in cells. H. erinaceus extract promoted NGF synthesis by 
hericenones from fruit bodies (Hericenone C-H) and by erinacines 
from mycelium (erinacines A-I) [15]. H.E. mycelium reduced MPP+-
induced PC12 cell toxicity in a concentration dependent manner, 
indicating that H.E. mycelium could contribute to the protective effect 

Figure 4: The biosynthetic pathway of dopamine neurotransmitters. 
Tyrosine hydroxylase is the rate limiting enzyme of the pathway. 
Phenylalanine hydroxylase converts phenylalanine to tyrosine, tyrosine 
hydroxylase hydroxylates tyrosine to L-DOPA. DOPA is converted to 
dopamine by decarboxylase. Dopamine converts to Norepinephrine 
by dopamine-β-hydroxylase and norepinephrine to epinephrine by 
phenylethanolamine N- methyl transferase.

 

Figure 5: H.E. mycelium prevented MPTP-induced death of TH (Tyrosine 
Hydroxylase)-positive neuron in striatum in mice.
(A). TH expression in striatum was assessed by immunohistochemistry.
(B). Quantitative analysis of TH-positive cells in the striatum of 
mouse brain. Dopamine neurons from mice are resistant to MPTP 
neurotoxicity. There is significant difference in the average number 
of TH positive neurons between the striatum of 0.3, 1 g/kg and that 
of MPTP group. Data are presented as means ± SEM (n=10-15). One 
way ANOVA and Newman-Keuls tests were used to analyze the data. 
**P<0.01; ***p<0.001 when compared to control; ###P<0.001 when 
compared to MPTP.
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of dopaminergic neuron in PC12 cells. In 2002, Park YS, et al. [32] 
reported that H. E. enhanced the synthesis of NGF (Nerve Growth 
Factor) and BDNF (Brain-Derived Nerve Factor) in PC12 cells. BDNF 
and NGF can be strongly expressed by dopaminergic neurons in 
SNpc. But, in human and animal models of Parkinson’s disease, the 
expression of NGF and BDNF levels are decreased [33,34]. Thus, NGF 
level corresponds very well to the severity of PD. By summing up all 
the evidence, a theory can be formed, in which erinacines of H.E. 
mycelium upon ingested are transported to the brain where significant 
amount of NGF molecules are formed. The NGF molecules then 
promote brain nerves in substantia nigra to grow where dopaminergic 
neuron produces dopamine to a level that alleviates the Parkinson’s 
disease.

In terms of effective dosage of H.E. mycelium, it was shown in 
this study that it performed much better than Ganoderma lucidum. 
Although it has been reported that Ganoderma lucidum has abilities 
to induce neuronal differentiation and prevent NGF-dependent PC12 
neuronal cells from apoptosis [35], H.E. mycelium was more effective 
in neuroprotection than Ganoderma lucidum in this PC12 cells study. 
It may be due to that fact that a new cell-wall breaking technology 
was employed and also finer particles were produced. It improves 
the release of active ingredients from smaller H.E. mycelium particle 
powders.

By using DPPH radical scavenging assay,  widely used method to 
evaluate the ability of mushroom to scavenge free radicals generated 
from DPPH reagent [36,37], the present data also showed that H.E. 
mycelium had more effective in scavenging DPPH radicals when 
compared to Ganoderma lucidum. The radical inhibition effect of 
Ganoderma lucidum was 59.3% at concentration of 1000 µg/ml, when 
compared with H. E. mycelium’s 96.1% and with ascorbic acid’s 100% 
at the same concentration.

Administration of MPTP was known to decrease the activity of 
neuron and the density of TH-positive neurons, indicating that the 
degeneration of the dopaminergic neurons in SNpc [38,39]. In our 
present study, injection of MPTP into C57BL/6 Narl mice induced 
significant reduction of dopamine level and TH-positive area in the 
striatum, suggesting that MPTP initially affects the dopaminergic 
cell body in the substantia nigra pars compacta (SNpc) and then the 
striatum where dopaminergic cells exert it’s function of release of 
dopamine. Tyrosine hydroxylase (TH) is the initial enzyme in the 
catecholamine synthesis pathway [40] and dopamine biosynthesis in 
the central nervous system [41]. TH is activated to form more DOPA 
and then dopamine by decarboxylation which is transferred into the 
synaptic vesicle by the vesicular monoamine transporter (VMAT). In 
addition, the loss of TH activity or expression is thought to contribute 
to dopamine deficiency, which is the most prominent at media level 
of SNpc (substantia nigra pars compacta) [39]. In our current study, 
the level of dopamine concentration and immunohistochemistry for 
TH positive neurons revealed that the loss of dopamine neuron in PD 
mice was dramatically prevented after treatment of H.E. mycelium.

In consistent with other research, the results of our present study 
showed that the immuno reactivity of TH was significantly decreased 
in MPTP-treated mice, suggesting that the majority of dopaminergic 
neurons were lost in the Parkinson’s disease mouse model [42]. The 
death of dopaminergic neurons led to decrease dopamine level in 
the substantia nigra. The expression of TH positive neuron and 
concentration of dopamine level were increased with the concentration 
of H.E. mycelium from 0.3 g/kg to 1 g/kg in MPTP-induced mice. This 
evidence suggested that the neuroprotection and anti-oxidation is involved 
in the protective effect of H.E. mycelium on dopaminergic neurons.

Conclusion
In conclusion, we have used cell culture and animal models to 

demonstrate the neuroprotective effect of H.E. myceliumin the PD 
model. Our results indicate that H.E. mycelium increased the cell 
viability of the MPP+ treated cells and performed in a very effective 
antioxidative effect in vitro cell culture model using PC 12 cells. In vivo, 
H.E. mycelium exerts significant neuroprotective effect by increasing 
the dopamine level and the activity of tyrosine hydroxylase (TH) in 
mice striatum. To sum up, our results suggest that H.E. mycelium 
performs significant protection of dopaminergic neuron under severe 
conditions and is very effective in the treatment of damaged neuron in 
the brain to recover in the case of Parkinson’s disease.
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