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Abstract
Chitin and lignin are two building materials, obtained from waste, giving strength to the exoskeleton of crustaceans and plant cells respectively. 

Both the polymers seem to be a dynamic structural source of molecules that trigger immune responses to humans as well. Moreover, due to 
their different electrical charges covering the surface of these natural ingredients, they may be bound to form micro/nanoparticles and innovative 
nanocomposites to be embedded into non-woven tissues for producing advanced medications, more effective when used in their nano dimension. 
By the use of these polymers, it is possible to produce porous scaffolds that, mimicking the natural Extra Cellular Matrix can facilitate the 
appropriate cell infiltration, proliferation, and differentiation. Both chitin and lignin have, in fact, an interesting antioxidant, anti-inflammatory and 
cicatrizing effectiveness, being easily metabolized from the environmental and human enzymes without producing toxic secondary ingredients. 
Some data are reported in this paper to support these activities.
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Introduction
Nanopolymers as carrier

Degradable and natural polymers represent the class of biomaterials 
more often used for cosmetic and biomedical applications as nanocarriers 
or tissue engineering scaffolds [1]. For their interesting properties, 
scientists have been encouraged to use them also as drug delivery 
systems, increasing their efficiency and improving their functionality and 
bioavailability to achieve maximum clinical upshot. Example of the most 
focused nanocarriers, which can load active ingredients to intracellular 
sites, are polymeric compounds such as liposomes, chitosan, chitin, and 
chitin nanofibrils reported by different scientific papers [2-7]. These natural 
fibers are used to make biocomposite materials as the most advanced and 
adaptable engineered polymers for producing safe matrices and innovative 
carriers. The right combination of polymeric matrices and reinforcing 
natural fibers may produce composites possessing the finest properties of 
each component. The fiber-reinforced composites, in fact, have the scope to 
improve or adjust the altered or variable properties (mechanical, thermal, 
optical, or electrical) of the matrices into which they are incorporated at 
the concentration rate from 1% to10% [8]. However, the ideal material for 
biomedical use should be biocompatible, biomimetic, non-toxic, and non-
immunogenic [9], having also the capacity to facilitate the cell adhesion, 
growth, migration and being responsible at molecular and physical level 
of the in vivo milieu [10,11]. Moreover, the biodegradability of all the 
materials used should be another important characteristic function of the 
tissue engineered design, remembering that a slow biodegradation is to be 
preferred for a long-term human  implant, while a rapid biodegradation 
results fundamental for the wright remodeling of the tissue to be repaired 

[10-12]. Additionally, cell proliferation and differentiation can be 
enhanced by the use of polymeric tissues having the same structure of the 
skin Extra Cellular Matrix (ECM) [13]. Also, the nanoparticle technology 
may be of help to maximize the therapeutic efficacy and minimize the 
undesirable side effects of the polymer system-of-choice by the control 
of its drug/active ingredient’s bioavailability and release [14,15]. This 
kind of release system, for example, can transport a wide variety of active 
ingredients through the epidermis, keeping them at the action site, in the 
right time and dosage [16,17]. Therefore, the nanotechnology may aim to 
(a) facilitate the ingredient transport, increasing its efficacy and reducing 
the possible toxic side effects; (b) maximize contact time with the skin, 
minimizing transdermal absorption; and (c) release the actives in the 
designed sites (Figure 1). Additionally, these polymeric nanostructures 
favour more contact with the skin stratum corneum, increasing the 
quantity of incorporated active ingredients to reach the action site [17]. 
Thus, the necessity to design the right protocol, (a) characterizing size and 
morphology of nanoparticles and fibers, (b) achieving both the proper 
nano encapsulation of the active ingredients and their inclusion in the 
polymer fiber/tissue, taking into account the stability of the entire  system 
and its loading efficiency, release pattern and activity.

Chitin nanofibril and nanolignin

Chitin (Figure 2) represents the second most abundant natural 
polysaccharide after cellulose [18]. On the other hand lignin (Figure 3), 
responsible for the strength and rigid structure of the cell walls in plants, is 
an available by-product of the paper manufacture and ethanol production 
from lignocellulosic biomass. It represents the second major component 
of wood and annual plants [19,20].
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possess interesting antibacterial and anti-inflammatory properties [25], 
useful to make innovative cosmetics for aged [6,26], problematic and 
sensitive skin [22,27] or non-woven tissues and perforated  films for 
feminine or baby pads [28].

Chitin
Coming back to the chemical and biological characteristics of chitin, 

it has been hypothesized that, this natural and ubiquitous polymer is a 
size-dependent regulator of innate immunity [29]. It is used, in fact, by 
fungi, crabs, and insects not only to protect their structures from the 
environmental harsh conditions, but also as host anti-parasite/pathogen 
immune response. The balance between biosynthesis and degradation of 
chitin, which regulates its accumulation on the relative settings, is mediated 
by chitinases (i.e., endo-Beta-1,4-N-acetylglucosamidases), enzymes 
produced as an immune response to chitin containing pathogens [30,31]. 
While the role of chitin and chitinases have been clearly established as 
signaling sensor of microbial and parasitic invasion in the field of plant 
and microbial immunity [32], their ability to regulate local inflammatory 
cell function in humans, is not enough clear [29-31]. In any way, this 
sugar-like polymer is the major component of many allergy-triggering 
environmental components, such as house-dust mites, crustaceans food, 
and fungal spores [33-36] (Figure 7), being appreciated as an under 
diagnosed disease entity. In fact, different studies clearly demonstrate that 
chitin and chitin derivatives can stimulate innate immune cells, such as 
macrophages, basophils and eosinophils, and modulate adaptive Type 
I or Type 2 responses, via a variety of cell surface receptors, including 
macrophage mannose receptors, toll-like receptors 2, and dectin-1, 
mediating their cellular and tissue effects in a size-dependent pathway 
(Figure 8) [37-39]. In addition recently, our group has shown that chitin 
nanofibrils have the capacity to complex different active ingredients for 
obtaining micro/nanoparticles and polymers capable to increase, for 
example, the whitening activity and effectiveness of a specifically designed 
cosmetic emulsions and non-woven tissues (Figure 9). Moreover, 
CN complexed with nanolignin has evidenced an interesting anti 
inflammatory and immunomodulatory activity, accelerating the repairing 
activity of burned skin (Figure 10) [25,40]. At this purpose, it is interesting 
to remember that the chitin-degrading enzymes, produced by humans as 
part of the 18-glycosyl-hydrolase and mainly expressed and secreted by 

Unfortunately both chitin and lignin as natural polymers are 
principally used to produce fuel, being underutilized for making added 
value products, also if they represent a waste material of about 300 billion 
tons /year [21].

It is interesting to underline that the renewable polysaccharide chitin, 
consisting of both crystalline and amorphous domains, has shown to be 
useful organic nanofiller [22]. According to a patented technology [23], 
the amorphous part can be removed and isolated from the nanocrystals 
which, used as supporting material for living bodies, are characterized 
for their high modulus and bioavailability. Chitin nanocrystals, in fact, 
known also as chitin nano fibrils (CN) form a microfibril arrangement 
in living plants as well as in animals, with size increasing from simple 
molecule and highly nano crystalline fibril, the composite matrix at 
micrometer level upward (Figure 4) [18,24] In the same way lignin (LG), 
solubilized in alkalized water and covered by a thin corona of PEG, can 
be easily treated by the spray drier to obtain a brown powder of micro/
nanoparticles with a mean dimension of about 163nm (Figure 5). 
Furthermore, combining the electropositive CN with the electronegative 
LG, it is possible to obtain micro/nanoparticles which, entrapping a wide 
variety of active ingredients (hydrophilic and/or lipophilic), can be used 
in medicine for their specific and effective characteristics and properties. 
Particularly, the simple CN-LG nanoparticles (Figure 6) have shown to 

Figure 1: Releasing of the active ingredients at the designed sites

Figure 2: Chitin as building material of crustacean ‘exoskeleton and 
fungi’ wall

Figure 3: Lignin proposed chemical structure
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Figure 4: Microfibrils arrangement of chitin in crustaceans (Source: 
Raabe et al modified)

Figure 8: The proposed role of chitin size in anti-pathogen responses to 
produce different pro inflammatory cytokines. [49].

Figure 9: Whitening activity of a cosmetic emulsion based on the use of 
CN-LG nanoparticles entrapping different active ingredients

Figure 10: Repairing activity of a burned skin by a non-woven tissue 
based on CN-LG nanoparticles entrapping nano structured Ag

Figure 5: Micro/nanoparticles of lignin covered by a thin corona of PEG 
at SEM

Figure 6: Micro/nanoparticles of the complex chitin nanoparticle-
nanolignin

Figure 7: The proposed role of chitin, chitinases and chitinase-like 
proteins as allergy/triggering environmental components. [35].

neutrophils and macrophages, are induced at sites of inflammation and 
infection for remodeling the tissue structure [41]. This suggests that such 
proteins could play an active role in anti-infective defense and resource 
responses [31,42-44], as shown from our recent studies also [25-27,40]. 
This the reason why CN has evidenced an increased release of skin 
defensins with a contemporary modulation of metalloproteinases, when 
used in culture of human keratinocytes and fibroblasts (Figure 11 and 12) 
[25-27,40]. It is to remember, in fact, that chitin has a repeating molecular 
pattern analogous to other Toll-like receptor 2, i.e., TLR-2, encoded in 
humans by the TLR-2 gene [45]. These TLR receptors have shown to 
function as sensors of microbial and parasitic invasion by the inflammation 
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cascade, as immune response to the pathogens [46,47]. Recently [48], it 
has been also evidenced that chitin seems to be a pathogen-associated 
molecular pattern (PAMP), capable to mediate some cellular and tissue 
effects in a size-dependent and specific-manner pathway. It seems to serve 
as a PAMP that, according to the chitin size, activates macrophages via 
TLR-2, regulating also in vitro and in vivo both their function and the 
acute inflammation phenomena, by a stimulated release of pro- and anti-
inflammatory cytokines. Chitin fragment, in fact, has shown to exert a 
size-dependent effect on macrophage activity, demonstrating a potential 
use as immune adjuvant (Figure 7) [48,49]. The mean size chitin has 
evidenced a pro-inflammatory activity, while its small size fragment (<40 
µm) has shown an anti-inflammatory function, activating in macrophages 
both TNF and IL-10 (Figure 8). Probably, the interesting effectiveness 
shown by CN is due not only to its very small size of 240 × 7 × 5 nm, but 
also to show the same backbone of hyaluronic acid (Figure 13), which 
could serve as an alarm signal by its degradation molecules [32,50]. At this 
purpose it has been suggested that chitin, recognized by some receptors, 
triggers the induction of chitinases, leading to the generation of small-
sized chitin particles that are taken up by the host cell [35]. However, the 
ability of polysaccharides to induce inflammation, according to their size, 
could be a general principle of glycol biology [35,39,51], where chitin 
fragments or nanochitin could modulate the intensity and chronicity of 
local inflammation and the consequential cell apoptosis [25,52].

Lignin
Lignin is an industrial by-product, which available in large amount from 

the plant biomass, is mainly used for energy production [20]. However, 
this interesting natural polymer contains in its branched molecule many 
phenolic, hydroxyl, carboxylic carbonyl and methoxyl groups, the structure 
of which represents an excellent source for the production of valuable 
molecules and functional products with antioxidant, antimicrobial and 
anti mutagenic properties [53]. One of the most studied characteristic 
of lignin is its antioxidant property connected with the hydroxyl and 
methoxyl groups which, functioning as proton donors could stabilize the 
radical in the quinone resonance structure [54]. Naturally, different types 
of lignin possess different antioxidant, antimicrobial and UV absorption 
properties, depending on the source and processing method used, as 
well as on the post-treatment and the different geographical origin of 
the plants. Any polymer, however, is recognizable for its own molecular 
weight, physicochemical characteristics and polydispersity [55,56]. This 
is the reason why a fine-tuning of the process condition is necessary to 

balance the recovery and the quality of lignin with those of other wood 
components. It contains, in fact, various phenolic groups, mainly based 
on the structure of benzoic acid and cinnamic acid (i.e., p-coumaric and 
ferulic acids). The phenolic groups confer to this natural macromolecule 
the interesting antimicrobial and antioxidant properties [57,58], centered 
specifically on the nature and side structure of the phenolic functional 
group [59], especially strengthened by its nano dimension. For this 
reason, lignin, hindering its phenolic groups, can stabilize the reactions 
induced by oxygen, reactive oxygen and nitrogen species (ROS and RNS), 
slowing down the aging processes of polymer composites realized with 
this natural macromolecule, as well as of the biological systems, when 
used as active ingredient in cosmetic and medical formulations. It is 
considered, in fact, as safe antioxidant and antimicrobial compound, 
being also a biodegradable ingredient with a low toxicity when used as 
filler for polymeric matrices or biological active ingredient for medical 
purpose [60].

Additionally, for its antioxidant, UV protectant, and antibacterial 
property, lignin represents also a promising green and natural ingredient 
useful to balance the general microbiota, allowing reducing the 
environmental problems related to petrol-derived chemicals [61]. For all 
these reasons we prepared, by the gelatin method, CN-LG nanoparticles 
which, blended with different active ingredients, have been used to 
make a non-woven tissue by the electro spinning technology. In fact, 
the CN is a cationic polymer while nanolignin is an anionic ion, so that 
the polyelectrolyte complex CN-LG intersects via ionic linkages. These 

 
Figure 11: mRNA expression of Defensine-2 in HaCat cells after 24 
hours of treatment with non-woven tissue made of CN-LG fibres

 
Figure 12: mRNA expression of Metalloproteinases-9 in HaCat cells 
after 6 and 24 hours of treatment with by non-woven tissue Made of 
CN-LG fibres

 

Figure 13: Chitin has the same backbone of hyaluronic acid
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Figure 14: Bactericidal activity of Chitin Nanofibrils on the microbial 
biofilm

Figure 15: The activity of CN-Chitosan as re-epithelialized agent that 
limiting the formation of hypertrophic scars and keloids

Figure 16: The CN scaffold (left) has the same structure of the skin 
ECM (right)

innovative tissues have been applied on burned skin with the purpose 
to obtain a quick, antioxidant, anti inflammatory, antibacterial and re-
epithelialization activity, as previously reported [25,40,62].

Chitin Nanofibril-Nanolignin particles
Due to the interesting specific characteristics of both Chitin nanofibrils 

and Lignin, it has been designed to use the CN-LG nanoparticles as 
functional delivery carrier of active ingredients for the human tissues 
regeneration. At this purpose, major efforts have been taken to develop 
non-woven tissues mimicking the behavior of the skin. By different studies 
[22,46], it has been shown that a non-woven tissue, made by the electro 
spinning of a CN-LG blend, incorporated into PEO and Chitosan, seems 
to play an important role in providing a platform capable to influence the 
perception and response of human cells to the skin tissue. This natural 
matrix, applied on wounded and/or burned skin, has evidenced to possess 
a chemo attractive property. It seems capable not only to activate both 
macrophages and neutrophils for initiating the healing process, but also to 
attack the microbial bio film (Figure 14) [22]. Moreover, it has been shown 
that CN promotes the tissue granulation and re-epithelialization, limiting 
the formation of hyper trophic and keloid scars (Figure 15) [63]. Chitin 
nanoparticles, in fact, activate keratinocytes and fibroblasts proliferation, 
regulating also the collagen synthesis and the cytokine and macrophage 
secretion [64]. According to a recent study [65], the wound healing 
capacity of this innovative non-woven tissue seems to be also based on 
the activation of the immune competent cells. These specialized cells, 
acting on chitin by the enzymatic activity of chitinases, cause the release 
of glucosamine and acetyl-glucosamine, which could modulate the ECM 
synthesis. In conclusion, the introduction of CN into the chitosan/PEO 
matrix, make it possible to form bio-reasorbable composite fibers and 
non-woven tissues, skin-friendly and with good adhesion characteristics. 
Likewise, the CN electro spun nanofibers, exhibiting an ECM-like 
architecture (Figure 16) together with interesting antibacterial and anti 
inflammatory effectiveness, seem to open new perspectives to make future 
innovative and biodegradable babies and feminine pads [28].

Conclusion
In conclusion, the defense from biological and environmental stressors 

could be centered on the endocrine regulation, synthesis and production 
of chitin by the immune system, in both invertebrate and vertebrate 
[66]. Thus, on one hand chitin and chitin-like proteins seem to play an 
important role in normal processes, such as cell growth, turnover and 
remodeling, while the skin antimicrobial peptides seem to be tightly 
trigged by the chitinases activities in mammals and humans also [67].

On the other hand lignin, as carbohydrate-based polymer could be 
considered not only a mechanical and passive defensive barrier against 
the pathogen attack, but also a dynamic structural source of signaling 
molecules that trigger immune responses to humans [66]. Moreover, as 
previously reported, it is a versatile biopolymer that seems to possess 
several other useful characteristics, such as UV-absorption, antifungal, 
antibiotic and anti-carcinogenic properties [68]. Thus, according to 
the obtained findings, it is possible to explicate the antimicrobial and 
skin repairing response obtained by the use of the non-woven tissue 
incorporating both CN and LG nanoparticles. This innovative matrix has 
shown to re-epithelialize in a shorter time the burned skin, improving 
the release of the incorporated active ingredients, in the right dose 
and time [6,25,40]. Moreover, it was also obtained a re-equilibrium 
of the skin superficial microbiota, while the cicatrization process was 
concluded without the formation of anomalous scars. In conclusion, a 
better knowledge of all the physicochemical and biological implications 
involving the chitin-chitinase and CN-lignin activity seems to be of great 
interest for understanding their possible interactions with the different 
layers of the human skin. From these studies and by the use of nanochitin, 
nanolignin and other natural by-products human and environmentally-
friendly, it will be possible to find innovative cosmetic and biomedical 
applications, as well as to identify new bio markers and/or therapies for 
fungal and other pathological conditions. This the goal of our future 
research projects necessary, in our opinion, to preserve the biodiversity 
of our planet, maintaining the natural raw materials for the future 
generations.
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