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Introduction 
In 1894, Emil Fischer suggested that the specificity of an enzyme towards 

its substrate is based on the two components exhibiting complementary 
geometric shapes that fit perfectly like a ‘key in a lock’. This simple 
‘lock and key’ analogy succinctly conceptualized the essence of enzyme 
substrate interaction where the ‘lock’ describes the enzyme and the ‘key’ 
describes the substrate or some other small molecule ligand (e.g. a small 
molecule inhibitor). In such systems, it is a requirement that the ‘key’ 
(substrate) fit appropriately into the key hole (active site/binding pocket) 
of the ‘lock’ (enzyme/receptor) for productive biochemistry to take place. 
Keys that are too small, too large, or with incorrectly positioned notches 
and grooves, will not fit into the lock (Figure 1).

But, enzymes show conformational flexibility and, on that basis, 
Daniel Koshland proposed a modification to the ‘lock and key’ model. 
Koshland’s suggestion was that active sites of enzymes are reshaped 
during interactions with substrate. This ‘induced fit’ model conceptualizes 
the ‘lock’ (enzyme) as a dynamic entity and that the ‘key’ (substrate) 
modulates the shape of the ‘key hole’. This concept paints a picture of an 
enzyme::ligand interaction that is more akin to that of a ‘pin tumbler lock’. 
That is, a device where the pointed teeth and notches on the key allow the 
pins and wafers in the lock to move up and down until they align with 
the shear line of the cylindrical grooves of the key. The cylinder moves or 
rotates within the lock until that fit configuration is reached and the ‘lock’ 
opens. In an analogous manner, a ‘correct’ substrate aligns with active site 
residues of the enzyme to induce the appropriate conformational changes 
required for the desired outcome. ‘Induced fit’ is an attractive hypothesis 
as it accounts for why certain ligands are not substrates for an enzyme 
-- even though they seemingly satisfy the specific shape requirements to 
bind to the active site (Figure 1). Computational chemists are now using 
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these basic ideas to model protein-substrate interactions. For reasons of 
its greater tract ability, the ‘lock and key’ paradigm has, for better or for 
worse, dominated the philosophical underpinnings of molecular docking 
approaches. In many respects, ‘induced fit’ approaches are more powerful-
albeit more complicated. Below, we review these issues as these apply to 
molecular docking.

Molecular docking reaches for two major goals. The first is to correctly 
predict and identify the most favorable binding mode of a given ligand 
in the active site or binding pocket of a given protein. The second is to 
correctly rank a family of ligands in accordance to their corresponding 
experimentally-determined binding affinities [1,2]. The high-throughput 
version of docking, often referred to as virtual screening or in silico 
screening, aims to harvest small lists of potential active compounds 
for downstream experimental testing from a database of millions of 
compounds [3]. All docking protocols have two essential components: 
(1) a good positioning algorithm, and (2) a robust ranking or scoring 
system. Docking requires extensive sampling of conformational space for 
a ligand in the binding pocket of a protein and thereby generates large 
numbers of potential poses that orient a ligand within the active site. A 
good positioning algorithm samples ‘all’ possible binding modes, while 
the scoring system ranks all the solutions and identifies the most likely 
‘binding mode’ of the ligand (Figure 2).

As simple as the process may sound, both components are themselves 
complex problems that pose significant challenges [4,5]. Positioning 
requires exhaustive exploration of accessible conformational space 
and binding orientations within the active site so as to extensively map 
interactions between active site residues and ligand. This requires that 
the process for generating binding modes respect a fine balance between 
speed and accuracy. That is, the process must not miss valuable solutions 
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while maintaining sufficient computational efficiency to triage nonsensical 
binding modes. The ability to correctly score and rank the binding modes 
generated for a ligand presents an even bigger challenge. In cases where 
a number of different ligands are being interrogated, the scoring function 
aims to generate a rank list that corresponds to the binding affinity. This 
is a challenging task as many scoring functions fail to accurately predict 
binding affinity and often simply report a score which may or may not be 
at all congruent with experimentally measured binding affinities [6].

Considering the vast conformational sampling space that must often 
be negotiated in docking experiments, it is not computationally feasible to 
explore all the degrees of translational and rotational freedom of the ligand 
along with the internal conformational degree of freedom for protein-
ligand complex. Therefore, docking experiments are typically coarse-
grained so that only a restricted sampling space is covered, and a limited 
number of the possible binding modes are sampled. To optimize docking 
and scoring functions, several methods have recently been developed to 
add layers of sophistication to simple ‘key into lock’ ideas.

Defining the ‘Lock’
The identification and mapping of a binding site from crystal structure 

data can reveal key elements in protein-ligand binding [7]. Such knowledge 
is indispensable for docking and rational drug design since, in the majority 
of cases, receptor-drug interactions are specific in nature. However, this is 
not as trivial an undertaking as it may initially seem. The first requirement 
for any successful docking simulation is to define an active site or binding 
pocket as this is a critical step in structure-based drug design, and provides 
a starting point for finding new lead compounds or drug candidates [8]. 
A broad suite of cavity detection methods has been developed to address 
these issues in docking and virtual screening simulations [9,10].

The success of docking and structure-based design of a drug molecule 
for a specific target site depended largely on the quality of information 
regarding active site architecture because it is the size and shape of active 
site or binding cavity that dictates the three-dimensional geometry 
of ligands that will bind within. Pocket architecture also governs the 
directional and non-directional intermolecular interactions that mediate 
protein-ligand binding. Thus, clear definition of a binding pocket surface, 
coupled with identification of protein::ligand interaction sites, provides a 
feature set for ligand orientation within a binding substructure. A target 
protein may have several pockets or cavities for a ligand to bind. Some 
might be deeply buried in the protein interior, while some might be 
displayed on the protein surface. However, the precise architecture of these 
pockets may not be absolutely clear from standard inspection of structural 
data as these cavities and protrusions are frequently interconnected via 
small and narrow channels, or are interspersed with numerous holes 
or voids [9]. The shape and size of binding pockets are also potentially 
subject to significant variations brought on by rotation of amino acid 
side-chains, backbone movements, loop motions, and/or ligand-induced 
conformational changes [9]. Fundamental uncertainties of this nature 
conspire to make identification of optimal dock solutions more difficult.

After defining the binding site surface, the next crucial step is to 
locate the interaction sites or “hot spots” within the binding site [11,12]. 
The primary goal of interaction mapping is to understand the chemical 
microenvironment of binding so that interaction points can be used to 
constrain pose possibilities and thereby restrict sampling space to a 
manageable size. Thus, binding site mapping is a critical step as it defines 
‘lock’ parameters and sets the constraints for positioning the ligand in the 
defined binding region. In addition to preparing the active site for docking, 
the physicochemical properties and/or interaction can be represented as 
fields that can be mapped and visualized, interactively, in three dimensions. 
Using interaction maps, the spatial distributions of properties such as 
charge, hydrophobicity, etc. can be qualitatively analyzed [12-15]. Points 

Figure 1: Illustration of ‘Lock and Key’ (top), Induced fit (middle) and 
Combination Lock (bottom) model of protein-ligand binding interaction.

Figure 2: Illustrates docking and scoring scheme as a two-step process. 
First step involves generation of poses within the binding cavity and 
second step involves energetic evaluation of poses to find best scoring 
pose that would mimic the native protein-ligand binding.
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reality is that contemporary state-of-the art docking algorithms, and the 
scoring functions that accompany them, do not adequately consider all 
the explicit and implicit contributions of water molecules to the binding 
equation. Nonetheless, several docking routines include methods for 
identifying relevant water molecules and including those contributions in 
pose generation and in calculating free energies of ligand binding [25].

Protonation and ionization states of binding site residues
In addition to managing issues associated with protein flexibility 

and solvent, both the computational intensities and uncertainties of 
the docking problem are compounded for protein::ligand systems with 
variable ionization states, and contributions of metals and counter 
ions [26]. Protein ligand interactions are sensitive to subtle changes in 
microenvironment of the binding site. Change in pH, buffer, ionic strength, 
and temperature conditions under which the data are collected also affect 
the microenvironment of an active site [27]. Protonation states of active 
site residues are typically not well-assigned, even in high resolution X-ray 
crystal structures, and therefore present little information to prepare the 
structure for docking [28]. Moreover, protein crystals are typically solvent 
rich (30-70%)-values that often include the crystallization buffer [29]. The 
accompanying ions and solvent molecules are distributed throughout the 
protein molecule in accord with the electrostatic properties of the solvent-
accessible pockets. Altering ambient pH often alters the ionization states 
of residues and thereby influences the shape and electrostatic properties 
of the binding pocket, and ultimately the set of ligand-binding solutions 
[30]. Multiplicity of protonation states in ligand–protein complexes is an 
often overlooked aspect in protein structure preparation as emphasized by 
the fact that current modeling techniques frequently ignore the possibility 
of multiple protonation states.

There is recent progress on this front, however. New algorithms such 
as the computational titration protocol implemented in Hydropathic 
Interaction (HINT) seek to identify and optimize all possible protonation 
states so that rational models with atomic details can be constructed and 
applied to model ligand-binding energetic [26,30,31]. By modeling all 
ionizable residues in the binding pocket, and calculating all the possible 
protonation states of residues and functional groups within the active 
site, the computational-titration methodology realistically samples the 
dynamic behavior of labile H-atoms in the active site microenvironment. 
In particular, an important aspect of the active site microenvironment 
that is often ignored is the dielectric constant within the active site 
[32,33]. While comprehensive estimations of polarizability and binding 
energies are computationally expensive endeavors, simplified models 
that use macroscopic dielectric models, either uniform or distance-
dependent, are being productively applied to descriptions of binding 
site microenvironments [34,35]. The message is that accurate prediction 
of binding free energies requires that pH, ionization and entropic 
contributions be taken into account in docking and virtual screening 
experiments.

Entropy
Entropic considerations, as well as the contributions of hydrophobicity, 

in ligand binding cannot be overstated but are often poorly characterized 
and poorly quantified [36,37]. Entropy and hydrophobicity are difficult 
to measure and therefore difficult to computationally model. It is for this 
reason that these parameters are sacrificed in favor of computational 
efficiency. Most approaches consider enthalpic and entropic contributions 
separately and sum these interactions to a cumulative score [38]. 
However, protein-ligand binding is a concerted event, and entropy and 
hydrophobicity are thermodynamic quantities which cannot be accurately 
described by a simple summation. Solvation and desolvation effects that 
involve hydrophobic interactions are significant factors in protein::ligand 
interactions but are particularly difficult to model computationally. But, 

of interaction between the ligand and active site might be elucidated 
and assessed qualitatively and, in some cases, semi-quantitatively. The 
importance of mapping interacting features is a critical endeavor since the 
number of ‘hot spots’ and their contributions to the larger binding process 
are essential for hypothesis generation. Quality interaction mapping also 
facilitates the docking process by defining a set of constraints that can be 
quantified in terms of how many, and which, interaction points might be 
matched by a ligand or a library of compounds. However, the harsh reality 
is that, even after defining the binding region for docking and extracting 
interaction sites, the docking process remains fraught with uncertainties 
that stem from the inherently dynamic physicochemical properties of the 
protein-ligand system.

Protein flexibility
Proteins leverage their intrinsic conformational flexibilities to carry 

out a wide range of biochemical processes in catalysis, protein-protein 
interaction and functional regulation [16]. In many cases, subtle motions 
in domains, flexibilities in the protein main chain, or re-orientation of 
side chains, changes the shape and size of the ligand binding envelope 
[17]. Ligand binding itself can also effect a change in the topography of 
binding pocket by inducing loop movements and other conformational 
shifts. These range from hinge movements of entire domains, to small 
side-chain rearrangements in residues of the binding pocket [18,19], and 
even structural transitions that involve opening/closing of otherwise rigid 
structural elements of the protein about flexible joints. For these reasons, it 
is always useful to compare holo- and apo-structures of a protein of interest 
whenever possible. Although most contemporary docking approaches 
treat ligands as flexible, it remains a challenging task to incorporate 
protein flexibility into the docking regime. A thorough analysis of side 
chain flexibility may provide invaluable insights for improving docking 
run and for optimizing protein-ligand interactions. Despite some recent 
advancements in considering protein side-chain flexibility in optimizing 
simulation of protein-ligand interactions, protein flexibility remains one 
of the most important factors in improvement of methods for docking 
ligands to their flexible protein partner [20].

Considering the role of water
H2O molecules play myriad roles in biological structure and functions. 

The importance of structured water molecules in biological systems 
cannot be overstated given their critical roles in modulating protein–
ligand interactions, and these considerations take center stage in the 
context of drug design and discovery [21]. When a structured water 
molecule is displaced by a ligand and banished to “bulk” solvent, the 
act of displacement increases system entropy and helps drive ligand 
binding. That is, ligand binding is thermodynamically more favorable 
if the ligand displaces a tightly bound water molecule by replicating its 
interaction with protein [22]. For protein-ligand complexes, many water 
molecules are retained in the active site and contribute to the energetics of 
protein::ligand interactions independent of entropic considerations. For 
example, waters can bridge protein and ligand and license what would 
otherwise represent unfavorable interactions between two chemically 
incompatible groups (e.g. two bases). Water molecules can also alter the 
“shape” and microenvironment of the active site by tightly associating 
with specific residues and thereby present a steric and electrostatic 
binding pocket profile that is different to the one presented by an 
anhydrous active site [23,24]. These varied functional involvements of 
water define yet another set of important considerations that must be 
respected in quality docking experiments and in rational design of high 
affinity lead molecules. Accessible surface areas of water molecules, the 
hydrogen bonds that involve water, the conservation and/or displacement 
of water, as well as the interaction energetics of water molecules are 
some of the factors that must be considered in docking simulations. The 

http://dx.doi.org/10.16966/ijmbm.106
http://dx.doi.org/10.16966/ijmbm.106


 
Sci Forschen

O p e n  H U B  f o r  S c i e n t i f i c  R e s e a r c h

Citation: Tripathi A, Bankaitis VA (2017) Molecular Docking: From Lock and Key to Combination Lock. J Mol Med Clin Appl 2(1): doi http://dx.doi.
org/10.16966/2575-0305.106

Open Access

4

the effort is worthwhile. Docking simulations that adequately consider 
the entropic, solvation/desolvation, and thermodynamic components of 
a binding reaction yield information whether the binding is enthalpy- or 
entropy driven and provide vital insights into the free-energy changes in 
the system [39-43].

Finding the right ‘key’
Once the ‘lock’ is defined (i.e boundary and interacting features 

within the binding pocket are delineated) the next core issue is to find 
a suitable key for the lock. To accomplish this task, the first step is fitting 
the ligand (key) into the binding pocket (key hole) and finding the 
best fit. That effort involves sampling different ligand conformations 
and orientations within the binding pocket and measuring the fitness 
of different alternative poses to identify the most favorable fit. Thus, 
docking approaches share two components: (i) a search algorithm that 
generates a sufficient set of different poses so that it exhaustively samples 
nearly all possible conformations and orientations for a ligand, and (ii) 
a scoring algorithm which evaluates the generated poses, approximates 
their binding energies, and identifies an optimal binding pose(s). Several 
different search algorithms have evolved over the past decades that were 
based on a variety of computational approaches [44-47]. Interestingly, the 
evolution of computational docking approaches offers interesting parallels 
to the evolution of thought from ‘lock and key’ to ‘induced fit’ hypotheses. 
Several approaches, with different degrees of sophistication, evolved 
from ‘rigid body’ considerations to ‘flexible ligand’ docking methods, 
and are still evolving into ever more sophisticated and computationally 
intensive ‘flexible-ligand and flexible receptor’ methods [48-51]. In rigid 
body approaches both the receptor and ligand are treated as static units 
and search algorithm tries to orient a rigid ligand within a rigid binding 
pocket [52-54]. Flexible-ligand methods treat the receptor (protein) as 
a rigid entity, but impart flexibility to the ligand and explore different 
conformations in systematic or random stochastic manners [48-51,55]. 
By contrast, ‘flexible-ligand and flexible-receptor’ approaches treat both 
receptor and ligand as flexible entities [56-59]. Despite the significant 
progress made in flexible protein-ligand docking, significant improvement 
is still needed. 

One of the earliest docking approaches involved systematic search 
logic [60,61]. However, the search becomes ever more complex with 
increasing ligand flexibility as the number of degree of freedom of the 
ligand molecule obviously increases. Such an approach was implemented 
in methods where ligand and binding pocket were considered to be 
rigid and ligand was fitted using shape complementarity as determined 
by point complementarity or distance geometry approaches [62,63]. In 
such docking methods, the shape of both the receptor site and the ligand 
is interrogated based on criteria of shape and pharmacophoric points. 
Orientations are generated through various alignment procedures in order 
to maximize the pharmacophoric constraints and shape complementarity. 
However, it is not feasible to exhaustively explore available conformational 
space, and an acceptable balance has to be struck between speed and 
accuracy so that as many binding modes can be explored as is feasible. 
Fragment-based approaches that involve either incremental construction 
of ligand in the binding pocket, or by simply placing and joining the 
fragment, circumvent problems associated with combinatorial explosion 
of conformers generated by the previous approaches [64-66]. 

Stochastic methods involving random sampling of conformational 
space of ligand in the binding pocket are also being widely applied in 
many docking algorithms. Algorithms using Monte Carlo sampling, 
coupled with Metropolis criterion, are applied to exhaustively interrogate 
the conformational space [67]. Simulated annealing protocols, combined 
with grid-based energy evaluations, can be coupled with such an 

approach to overcome high conformational energy barriers in the 
sampling regime [68]. Another such stochastic approach that has been 
successfully implemented in docking algorithm is the genetic algorithm-
based sampling of conformational space [69-71]. In this approach, multi-
conformers referred as chromosomes are evaluated, crossed and mutated 
and the best possible solution is selected based on a fitness function. The 
ultimate solution is represented by the best scored conformation of the 
total conformers after a suitable number of generations. GOLD (Genetic 
Optimization for Ligand Docking) is the most widely used algorithm of 
this type for flexible molecular docking [72]. 

In contrast to systematic and stochastic approaches, molecular 
dynamics-based and heuristic tabu searches are also implemented 
to explore the sample space [73,74]. However, molecular dynamics 
is computationally expensive which restricts its use in docking. To 
circumvent the problem of exhaustive sampling, tabu search approaches 
are adopted where a list of already explored conformations is maintained 
and only unexplored spaces are sampled [75]. This avoids reinvestigating 
space already sampled by associating previously sampled conformations 
with a degree of penalty. Apart from these deterministic approaches, 
hybrid consensus logic combine features from other two approaches 
[76,77]. Although these approaches can exhaustively generate and sample 
all possible conformations within the active site, it remains a fact that the 
success of any docking program is measured by how well it reproduces 
experiment.

The success of whole molecule docking, de novo construction of 
molecules into a target site, or screening large virtual combinatorial 
libraries is ultimately dependent on the accuracy of the scoring function 
that ranks the compounds. Ligand orientations can be evaluated on the 
fly as the ligand or fragment is positioned within the cavity, or all the 
generated poses can be scored in the end. The scoring methods that are 
used in high throughput settings i.e. that deal with thousands of diverse 
compounds, can be evaluated by how well the corresponding relative 
binding affinities can be predicted. That need has spurred development 
of multiple methods which can be subdivided in four major approaches: 
force field-based methods, semi-empirical approaches, empirical scoring 
methods, knowledge-based potentials, and consensus scoring functions 
that are a combination of multiple scoring functions [78-80]. 

Force field-based methods
Force field-based scoring methods generally use a molecular mechanics 

force field. This parameter contains terms for intramolecular forces (e.g. 
bond, angle and dihedral terms) between atoms bonded to each other, plus 
energy terms for intermolecular forces that describe the forces between 
non-bonded atoms (e.g. Van der Waals and Coulombic terms). There are 
also a number of widely and successfully applied molecular mechanics-
based scoring functions [81-84]. Their popularity in virtual screening 
programs is a reflection of their simplicity. Though faster and simpler, 
these functions are not ideal for simulating biomolecular interactions 
as those methods were developed for calculating gas phase enthalpy of 
binding. Thus, this class of scoring approaches has many drawbacks, 
primarily that these ignore hydrophobic interactions, and solvation and 
entropic effects. 

Empirical scoring methods
Empirical scoring methods offer an alternative approach to pure 

molecular mechanics-based force field scoring methods [85]. The 
principle is that the binding free energy of a non-covalent protein-
ligand complex can be factorized into a sum of localized and chemically 
intuitive interactions. The terms accounting for different contributions 
such as hydrogen bonds, hydrophobic interactions, entropic effects are 
normalized by weighting factors derived from regression analyses of 
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data from training sets comprised of well characterized protein-ligand 
complexes. Based on the assumption of additivity, the binding affinity is 
estimated as a sum of interactions multiplied by weighting factors and 
solved by equation of the type (1):

ΔGbinding ≈ Σ ΔGifi (rl, rp)                                       (1)

Where fi is a simple geometrical function of the ligand (rl) and receptor 
(rp) coordinates [6]. However, accuracy of these methods depends upon 
the quality of the experimental binding data and of the crystallographic 
structural data of the training set. 

Semi-empirical approaches
Semi-empirical scoring functions combine the above two approaches 

and incorporate empirical, or empirically calibrated, energetic terms for 
interactions that cannot be computed by pure molecular mechanics-based 
methods. Thus, implicit binding energy terms such as hydrogen bonding, 
solvent effects, hydrophobicity and entropic terms are included in the 
scoring functions. In contrast to force field-based scoring functions, semi-
empirical scoring terms also more accurately estimate binding energies by 
accounting for entropic and solvation effects known to significantly affect 
biological interactions in aqueous medium [86-89]. 

Knowledge-based scoring
Knowledge-based scoring functions [90] are rule-based regimes where 

rules are derived from the analysis of structural data of known and well 
characterized receptor-ligand interactions. The exponential growth and 
availability of protein-ligand crystal structures is enabling derivation and 
formulation of rule sets based on frequencies of chemical interactions. 
Scoring functions of this type seek to capture the knowledge about 
protein-ligand binding that is implicitly stored in the protein data bank 
by means of statistical analysis of structural data. That is, potentials are 
obtained by statistical analysis of atom-pairing frequencies observed in 
crystal structures of protein-ligand complexes [91]. Again, the accuracy of 
knowledge-based scoring function depends on the quality of experimental 
data, as it incorporates structural knowledge without considering 
inconsistencies in experimental and structural data. 

Consensus scoring
Although multiple approaches have been implemented for derivation 

of a robust scoring function, none of the scoring functions are ideal. 
Invariably, various approximations are made to strike a balance between 
speed and accuracy. Taking into consideration the limitations of anyone 
scoring function, the concept of consensus scoring evolved from the base 
premise that a combination of different scoring functions will buffer 
inherent weaknesses in individual functions and offer better performance 
[92]. A consensus between a set of scoring functions can be reached either 
by averaging the rank assigned by each scoring function, or averaging 
the score value calculated by different functions. Ideally, the best scoring 
function should be able to discriminate between native and non-native 
binding modes and be able to calculate the actual free energy of binding.

Combination Lock and Key
Traditional docking approaches largely operate on ‘lock and key’ 

concepts, and this philosophy has enjoyed some successes in estimating 
the native binding poses of small molecule ligands. A variety of 
sophisticated approaches have come on-line in recent years that consider 
conformational flexibility for both ligand and protein [93]. However, the 
fact remains that both ‘lock and key’ and ‘induced fit’ approaches provide 
a simplistic views of ligand-binding phenomena that in actuality represent 
intricate molecular recognition/interaction processes. For this reason, we 
prefer to view protein-ligand recognition and binding reactions in terms 
of a ‘combination lock’ system (Figure 1). In this scenario, a tandem 

combination of complementary features provided by both the protein 
and the ligand match as in case of a ‘combination lock’. Upon satisfying 
a suitable combination of features a binding event then ensues. For 
matching to occur, both feature variables on protein and ligand fine-tune 
and adapt in a search for the best complementarity. That is, the better the 
feature matching the tighter the binding. The questions then come to: (i) 
what are these features, (ii) how are these features encoded in the three-
dimensional structure, and (iii) how is the three-dimensional feature code 
decoded by binding partners? The features could be geometric properties 
based on the three-dimensional structure of the molecule (e.g. shape, size, 
volume, surface area, etc.) and/or physicochemical features described 
by intrinsic electronic properties of a molecule (e.g. electrostatic, 
hydropathic and van der Waals energetic components). While the energy-
based features are more dynamic in nature, and manifest themselves in 
three-dimensional interaction fields, the geometry-based properties are 
static in character. It is the sum of pharmacophoric chemical features 
(e.g. hydrogen bond donor/acceptors, aromatic centers, etc.), geometric 
features, and intrinsic electronic features of the molecules that define 
unique interaction fingerprints. The spatial arrangement of these 
various properties is a particularly discriminating property as electronic, 
hydropathic and van der Waals energetic properties have varying 
intensities in three-dimensional space and thereby form unique fields the 
strength of which vary from point to point and are distance dependent. 
The patterning of these feature sets in three-dimensional space forms the 
essence of molecular recognition.

Using the ‘combination lock’ concept, the essential challenge in 
developing the next generation of robust and predictive docking model 
is to accurately derive the critical interaction features and map their 
arrangement in three-dimensional space. These encoded features 
and properties must first be extracted to define exclusive ‘interaction 
fingerprints’ for both a ligand binding substructure on the receptor and 
for the ligand. These unique features and ‘interaction fingerprints’ can 
be stored as mathematical representations in two- or three-dimensional 
matrices. Subsequently, machine learning and feature matching algorithms 
can extract the relevant features and simulate the corresponding protein-
ligand binding interactions [94,95]. Features extracted from physical-
chemical properties and energies will have broad applicability in deriving 
target-focused docking and scoring in addition to developing regimes for 
generating target-focused libraries in silico (Figure 3).

The availability of substantially more protein-ligand complex data 
and robust machine learning algorithms suggests that feature matching 
methodology may now be even more effective approach to predict and 
characterize protein-ligand binding. Recently, a combination of structure-
based QSAR approach was implemented to generate descriptive and 
predictive models for phosphodiesterase-4 inhibitors [96]. This approach 
applies machine learning methodology to describes protein-ligand binding 
based on matching of ligand pharmacophore feature pairs with those of 
the target binding pocket. The method takes advantage of structure of 
binding pocket to derive feature sets or descriptors which is used as a 
reference for matching and makes it unique and target specific. Similar 
feature sets are generated for ligands followed by generation of structure-
based pharmacophore key (SBPPK) from the protein-ligand complex 
based on their feature matching patterns with the binding pocket. Once 
the feature pairs are generated for both the receptor and ligands machine 
learning methods can be employed to determine pattern matches to build 
descriptive and predictive models of protein-ligand interactions. The 
method was successfully applied to study the SAR (Structure Activity 
Relationship) of 35 PDE-4 inhibitors. In another similar approach, atom 
based Interaction Fingerprint (IF) were applied to describe the patterns 
of ligand pharmacophores that interacted with proteins in complex [97]. 
These fingerprints are calculated from the distance of pairs of ligand 
pharmacophore features that interact with protein atoms delineating 
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important geometrical patterns of ligand pharmacophores. From a 
physicochemical and pharmacological perspective, the detected patterns 
of ligand features would facilitate an understanding of the structure-
activity relationship of the protein-ligand interactions. The method 
further allows a comparison of the interaction patterns of a target with 
those of several other targets and facilitates in sillico screening against 
other homologous proteins. Some of these approaches are applied as a 
pre-screen and to filter large databases of small molecules before they are 
actually docked into the protein binding pocket. This database filtering 
procedure was applied to virtually screen HIV protease inhibitors from 
ZINC database [98]. The method involved identification of binding site 
topology and generating site interaction points based on physicochemical 
property. The resultant functional/interaction properties are saved as a 
receptor site’s distance matrix. Similar to receptor site distance matrix, 
functional interaction points are located in small molecule ligand and a 
similar topological matrix is generated. The methodology can be seen as a 
comparison and matching of the ligand’s distance matrices with receptor’s 
matrices. Overlay and matching of receptor and ligand site matrices with 
each complementary pair, describes ligand’s functionalities mapped onto 
receptor’s binding pocket. Similar matrices can be generated for small 
molecules and large databases can be screened as comparing the matrices 
is a simple matter of matching each molecule’s distance matrix with the 
one generated from the protein’s binding pocket. The high proportion 
of known active compounds recovered in the top ranks along with 
target specificity signifies a promising future for the feature matching 

approaches for virtual screening. Such hybrid QSAR, machine learning 
approach that take into account ligand features as well have been applied 
and benchmarked against traditional rigid body docking methods and 
affords similar or better enrichment ratios in virtual screening [99-102]. 
We suggest that ‘combination lock’-driven approaches better capture the 
complex inter-relationships between feature properties of interacting 
biomolecules, and that implementation of such approaches will herald 
significant progress in our ability to model protein-ligand binding events 
with superior accuracy.

Conclusion 
A primary aim of structure-based drug design is to adequately describe 

the binding interactions between a drug and its target. Traditionally, 
and perhaps in a tired analogy, protein-ligand binding is treated as a 
‘Lock and Key’ system. Although pioneering studies in flexible docking 
and free energy calculation are making significant progress towards 
improving the accuracy of docking and virtual screening regimes these 
technologies remain complex, are time consuming and, for a variety 
of reasons, still suffer errors. Paradigm shifts in docking and scoring 
regimes are being driven by the evolution of artificial intelligence and 
machine learning algorithms for pose scoring and evaluation. With the 
availability of experimental binding data from bioactivity databases the 
molecular docking field is witnessing the emergence of hybrid approaches 
that combine ligand-based and structure-based approaches. Some of 
the current methods extend ligand-based machine learning strategies 
and principles in the direction of structure-based approaches. Based on 
feature extraction and correlation with crystallographic and bioactivity 
data, robust predictive models can now be generated complementing 
structure-based approach. Such hybrid ‘Combination Lock’ approaches 
are evolving technology and albeit with number of limitations, holds great 
promise for future progress in drug discovery and development.
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