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Abstract
Shiga toxin-producing Escherichia coli O157:H7 are bacterial pathogens that cause foodborne infections in humans. The objectives of this study were 
to find the pooled prevalence and concentration of Escherichia coli O157:H7 in cattle, hides, carcass, and the environment in the United States of 
America using meta-analysis. The PRISMA and MOOSE research protocols were employed in the methodology. Weighted effect size was calculated 
using MetaXL software. A total of 1737 publications were screened, out of which 53 were selected for the final analysis. The pooled prevalence 
in feedlot cattle was 10.96% (95% CI: 4.2-18.8%). In dairy cattle a pooled prevalence of 1.5% (95% CI: 0.11-3.5%) was observed. The prevalence 
between feedlot and dairy cattle was significantly different (p<0.05). The herd prevalence in combined feedlot and dairy cattle was 31.7% (95% 
CI: 10.2-55.5%). Hide and carcass samples’ pooled prevalences were 54.7% (95% CI: 41.7-67.5%) and 21.3% (95% CI: 9.7-34.2%), respectively. 
Prevalence of environmental samples was 8.1% for produce (95% CI: 0-29.6%), 4.6% for watershed and sediment samples (95% CI: 0-12.2%), and 
2.4% for water taken from troughs (95% CI: 0.39-5.1%). Significant difference was observed in individual, herd, and environment prevalence between 
regions (χ2 =903.14, p=0.0000; χ2 =11.06, p=0.0039; χ2 =13.59, p=0.0004, respectively). E. coli O157:H7 concentrations were highest in feces (900-
300,000 cfu/g), followed by hides (5-9,800 cfu/100 square cm), and carcass (1-189 cfu/100 square cm). At least one supershedder exists in a 
herd. The findings in this study showed that Escherichia coli O157:H7 serotype is widespread in feedlots, herds, hides, and carcass in the United 
States of America necessitating appropriate measures to prevent human illnesses. Improving management programs in cattle herds, reduction of 
environmental contamination, and hygienic slaughter practices are targets of intervention.

Keywords: Escherichia coli O157: H7; Prevalence; Concentration; Cattle; Feces; Hide; Carcass; Environment; Meta-analysis; United States of 
America

Introduction
Shiga Toxin-producing Escherichia coli (STEC) are bacterial 

foodborne pathogens producing disease in humans characterized 
by diarrhea, Hemorrhagic Colitis (HC), and Hemolytic Uremic 
Syndrome (HUS) [1-3]. From about 500 O-serotypes of Shiga toxin-
producing Escherichia coli isolated so far from humans with disease, 
only seven serogroups (O26, O45, O103, O111, O121, O145, and 
O157:H7) are associated with severe clinical illness [2]. One of these 
serotypes, Escherichia Coli O157:H7 (E. coli O157:H7), is studied 
extensively.

E. coli O157:H7, responsible for the majority of human 
enterohemorrhagic diseases, has a worldwide distribution [4]. 
Outbreaks of illnesses associated with E. coli O157:H7 have been 
reported throughout the northern hemisphere, most frequently 

Canada, Japan, the United Kingdom, and the United States of 
America [5]. The pathogens most often implicated in outbreaks 
caused by consumption of fruits and vegetables from 2009 to 
2010 were  norovirus, Salmonnella species and E. coli O157:H7 
[6]. The predominant serotype isolated from patients among 
Enterohemorrhagic  E. coli (EHEC) group was E. coli O157:H7 [1]. 
E. coli  O157:H7 infection alone is responsible for 73,480 illnesses, 
2,168 hospitalizations, and 61 deaths annually in the United States 
[7]. Besides causing foodborne illnesses, E. coli O157:H7 is associated 
with economic losses. Since the 1980s, more than $2 billion have been 
spent by the cattle industry to combat E. coli O157:H7 and STEC in 
pro cessing plants [8].

Cattle are natural reservoirs of STEC serotypes including E. coli 
O157:H7 [9,10]. However, except less than three days old neonatal 
calves [11], cattle do not suffer disease as they lack vascular receptors 
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in their tissues [12]. E. coli O157:H7 colonizes the terminal colon 
specifically the Rectoanal Junction (RAJ) mucosa [13-16]. In 
colonized cattle, a unique class of cattle known as “supershedders” 
are responsible for most of the contamination of the population 
[17,18]. Supershedders are defined as animals with E. coli O157:H7 
concentrations of at least 103 Colony Forming Units (cfu) per gram 
of feces [3,15,19]. Feces are the major source of contamination to 
beef and produce [20]. In Scotland clustering of human infections 
was associated with regions with high cattle to people ratio [21-
23]. A direct link between cattle and human infection has been 
established by phage typing and Pulsed Field Gel Electrophoresis 
(PFGE) [24,25].

Important sources of STEC O157 contamination in the United 
States of America are food [7,26,27], water [28,29], pen floor [28], 
processing plant lairage [30]; and unpasteurized apple juice, spinach 
and salami [31,32]. Sixty-five percent (65%) of STEC O157 outbreaks 
were transmitted primarily through consumption of food (beef and 
produce); the rest through animal contact (10%), person-to-person 
(10%), waterborne (4%), and other or unknown medium (11%) 
[33]. According to different studies, cattle hides and beef carcass 
contaminations are common particularly during the slaughter process. 
E. coli O157:H7 prevalence was 20.3% on hides and 6.7% on carcasses 
[34]. The prevalence of E. coli O157:H7 on hides was 50.3% when 
cattle were loaded onto a transporter [30]. Natural transmission of E. 
coli O157 between cattle is thought to be largely by the fecal-oral route, 
although transmission may be indirect through an environmental 
reservoir [35]. 

Many publications on the prevalence of E. coli O157:H7 are available 
in the United States of America; however, an overall single quantitative 
estimate of this specific serotype in individual cattle, products, and the 
environment is lacking. We, thus, conducted a meta-analysis study of 
E. coli O157:H7 in the United States of America to determine (a) a 
pooled prevalence in cattle, hides, carcass, and environmental samples, 
and (b) summarize concentrations of the serotype in cattle feces, hides, 
and carcass.

Methods
Meta-analysis, a statistical analysis of a large collection of analyses 

results from individual studies for the purpose of integrating the 
findings [36], was the method adopted in this study. The PRISMA 
statement (Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis) [37] and the Moose Statement (Proposal for Reporting 
Meta-analysis of Observational Studies in Epidemiology) [38] 
protocols were selected.

Study area and population
The study area was the United States of America. All of the cattle in 

the country constitute the study population. Relevant databases were 
searched to screen and select publications for the final meta-analysis. 
Cattle studied in these selected publications were sampled from all 
the four regions (Northeast, Midwest, West, and South), consisting of 
17 states mentioned by name; and “U.S. States”, “Across U.S. States”, 
“Western U.S.”, “North U.S.”, “South U.S”, “Midwest”, “West”, “South”, 
where the states were unnamed (Table 1). The division of the regions 
into Northeast, South, West, and Midwest was based on the U.S. 
Census Burea.

Search strategy
Search terms used were, (i) Prevalence study: “Prevalence of 

Escherichia coli O157:H7 in cattle in the United States of America”; 
(ii) Prevalence of environmental samples study: “Shiga toxin 

Escherichia coli O157:H7 contamination in environment, slurry, fruits, 
vegetables, pasture, food, and feed in the United States of America”; 
(iii) Concentration study: “Colony forming units of Escherichia coli 
O157:H7in the United States of America”. PubMed

(www.ncbi.nlm.nih.gov./entrez/query.fcgi), Science Direct (www.
sciencedirect.com), Google Scholar (http://scholar.google.com) were 
the three free database sources used in the study.

Inclusion and exclusion criteria 

First author conducted the search. Two authors (first and second) 
screened records using all set criteria and selected publications used 
in the analysis. Complete agreement was reached by consensus. 
Methodology was discussed among authors including other persons 
and suggestions were incorporated. Criteria used to select eligibility of 
searched publications are listed (Table 2).

Data extraction

For all the studies data were extracted based on author(s), year of 
study, title of article, diagnostic method, production system (beef, 
dairy), cases (positive results), sample size, type of sample, cfu per 
gram of sample, cfu/square cm, state, and type of article.

Regional difference
Differences in prevalence for individual, herd, and environment 

categories were analyzed between regions.

Data analysis
The inverse variance heterogeneity model (IVhet model) was used in 

this study. A better performance of the inverse variance heterogeneity 
model embedded in MetaXL software compared to the fixed effect or 
random effect models is described [51]. Heterogeneity among studies 
was determined to see whether there were true differences underlying 
the results of the studies or the variation in findings was due to 
chance. We used I2 statistic to assess heterogeneity. A better measure 
of consistency between studies using I2 is described [52]. Doi plots 
[53], which plots effect size against sample size are used to analyze 
and display publication bias. The overall effect size estimated in this 
study was prevalence. Methods for the meta-analysis of prevalence 
and double arcsine transformation are described [54]. Individual 
prevalence is defined as the number of animals that are positive (shed 
E. coli O157:H7) among animals tested; and herd prevalence is the 
number of positive herds among total herds tested. A positive herd (or 
farm) is a herd which has at least one animal shedding E. coli O157:H7. 
Similar epidemiological approach was used to calculate hide, carcass, 
and environmental samples’ prevalences. In this study, supershedders 
are defined as animals with E. coli O157:H7 concentrations of at least 
103 colony forming units (cfu) per gram of feces. Sensitivity analysis 
was done to asses if the overall effect size changes when outlying 
small or large values are excluded. The absence of significant changes 
shows that the estimated overall effect size is robust. Meta-regression 
was conducted to investigate whether particular covariates explain 
the observed heterogeneity between studies. Year, sample size, and 
region were extracted from publications eligible for quantitative 
meta-analysis. Differences between regions were analyzed using Chi 
square statistic. Test of homogeneity together with post hoc analysis 
using pair wise comparison method was selected for further analysis. 
MetaXL software version 5.3 [55] was used for quantitative meta-
analyses. R statistical computing software version 4.0.5 (R Core Team, 
2020; R Studio Team, 2020) was used for meta-regression analysis and 
to calculate Chi square values.

https://www.sciforschenonline.org/journals/epidemiology-public-health/
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Region State Cattle population (1,000 
head) [39]

This study (% of 
whole)

Regions and/or States 
(known/unknown)

Northeast New York 1,420.0 1.52 (Known)
South Alabama 1,290.0 1.38

Louisiana 775.0 0.83
North Carolina 800.0 0.85
Oklahoma 5,300.0 5.66
Tennessee 1,790.0 1.91
Texas 13,100.0 14.00

Midwest Kansas 6,500.0 6.94
Nebraska 6,850.0 7.32
North Dakota 1,950.0 2.08
Ohio 1,260.0 1.35
Wisconsin 3,450.0 3.69

West California 5,150.0 5.50
Colorado 2,650.0 2.83
Idaho 2,500.0 2.67
Oregon 1,250.0 1.34
Utah 800.0 0.85
Washington 1,140.0 1.22

Total 17 56,025,668a 59.86

NA [40]b U.S. States NK NK Regions and/or states 
unknown

NA [41] U.S. States NK NK
NA [42] U.S. States NK NK
NA [16,43-46] NA NK NK
NA [47] Across U.S. States NK NK

West, Southc [48] Alabama, California, Washington state,
North Carolina, Tennessee 10,170.0 18.15

Western U.S. [49] NA NK NK
North U.S.,
South U.S.c [50]

NA NK NK

Midwest, West, Southc 

[30]
Kansas, Nebraska, Oklahoma, Texas, Idaho, Utah, 
Colorado, Washington State, Oregon, California 45,240.0 80.75

Table 1: Study area showing the regions, states, and cattle population.

NA not available, NK cannot be determined because of incomplete content in the original publication.
aU.S. total cattle population is 93,594,500 head [39].
bNumbers in parenthesis stands for reference
cMixed data

Results
The number of publications selected for the final meta-analysis is 

illustrated (Figure 1). Out of a total of 1737 publications screened 53 
were selected to be used for the final quantitative meta-analysis.

Prevalence of E. coli O157:H7 in cattle and the environment 
The pooled prevalence of E. coli O157:H7 in feedlot cattle in the 

United States of America was 10.96% (95% CI: 4.2-18.8%) (n=23,048) 
(Table 3) (Figure 2). In dairy cattle, the pooled prevalence was 1.5% 
(95% CI: 0.11-3.5%) (n=10,188). The pooled herd prevalence was 
31.7% (95% CI: 10.2-55.5%) (n=377) in combined beef and dairy cattle 
herds. The difference in prevalence between beef and dairy cattle was 
significant (p<0.05). Unweighted individual prevalence ranged from 
0.71 to 27.8% in feedlot cattle, 0.3 to 5.5% in dairy cattle, and 7.1 to 
100% in herds. The pooled prevalence decreased from 10.96% (~11%) 
to 10% when four outliers were excluded by sensitivity analysis (Figure 
3). Similarly, I2 dropped from 99 to 89. Further exclusion of any outliers 

didn’t change the pooled prevalence from 10%.Among environmental 
samples, the highest prevalence was observed in produce (8.1%; 95% 
CI: 0-29.6%) followed by watershed and sediment samples (4.6%; 95% 
CI: 0-12.2%). Prevalence of water taken from drinking troughs was low 
(2.4%; 95% CI: 0.39-5.1%). Unweighted prevalence of environmental 
samples ranged from 1 to 68%.

Hide and carcass contamination

The pooled prevalences of hide and carcass contamination 
were 54.7% (95% CI: 41.7-67.5%) and 21.3% (95% CI: 9.7-34.2%), 
respectively. Hide and carcass contamination showed 400% and 100% 
percent increases, respectively, from individual feedlot prevalence.

Concentration of E. coli O157:H7

Only seven (7) out of 792 publications screened were selected for 
final analysis. Due to lack of appropriate statistical model as data were 
produced based on different scales of measurement, it was not possible 

https://www.sciforschenonline.org/journals/epidemiology-public-health/
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Type of study Inclusion criteria Exclusion criteria

General criteria: Escherichia coli O157:H7 or Shiga toxin-producing 
Escherichia coli O157:H7. Escherichia coli O157:H- and non-O157 STEC.

Study methods are cultural and molecular which detect at 
least one shiga toxin (stx1, stx2) and intimin (eae) gene.

Serological diagnostic method.
Outbreak results. 

Cattle, male, female; all age groups; feedlot, dairy, or mixed.

 Pathogen inoculation studies, intervention and 
treatments (antimicrobial use, feeding high concentrate, 
treatments with phenolic acids, monensin, essential oils, 
microbials, and probiotics).

Publication type: original articles, abstracts, theses, short 
communication, proceeding. Reviews, books, news.

Language: English.

Time frame: from 1980-8/15/2020.

Specific criteria:

Prevalence in cattle Observational studies. Phage prevalence study results.

Denominator included.

Sample size: ≥ 30 (individual prevalence); any sample size for 
herd prevalence.

Fecal samples taken directly from the rectum Fecal pats, hide, and carcass samples.

units of hides and carcass samples from processing plants

Prevalence in environmental 
samples

Pasture soil, water (watershed, water trough), feed, pen, 
feedlot surface area. Fecal pats collected from pens, fields.

Fresh produce. Hide and carcass samples.

Concentration cfu per gram or log cfu per gram of feces. cfu per ml of sample.

Fecal samples taken directly from the rectum. Hide and carcass samples.

   Environmental samples. Fecal pats.

cfu per 100 sqcm of hides and carcass samples 

Samples from outbreaks included.

Table 2: Inclusion and exclusion criteria.

to estimate a concentration weighted effect size. Hence, the records 
were summarized as presented in the original publications (Table 
4). The concentrations on feces (cfu/g), hides (cfu/100 square cm), 
and carcass surfaces (cfu/100 square cm) ranged from 900-300,000, 
5-9,800, and 1-189, respectively. In all of the final records selected, at 
least one supershedder was found in a herd.

Regional difference
The pooled individual prevalences (beef and dairy combined) 

were 4.8%, 12.3%, 0.39%, and 0.96% for South, Midwest, West, 
and Northeast, respectively. Significant difference was observed in 
individual, herd, and environment prevalence between the regions 
(χ2=903.14, p=0.0000; χ2=11.06, p=0.0039; χ2=13.59, p=0.0004, 
respectively). In the individual animal post hoc analysis, each region 
was different from the other entire region. In the herd and environment 
prevalence, the Northeast was significantly different from the rest; 
however, the South, Midwest, and West regions didn’t show significant 
differences among them. 

Discussion
The study was conducted to determine the magnitude of E. coli 

O157:H7 serotype in cattle, products, and the environment with a 
single collective quantitative estimate. Studies selected covered all 

the four regions and at least seventeen states out of the fifty. When 
only states identified by name are considered, sampled cattle represent 
59.86% of the study population. We couldn’t compute the exact figure 
as a good number of publications didn’t name states; hence, the true 
representation is greater.

Prevalence in cattle
A high presence of E. coli O157:H7 in cattle was observed. One in 

ten beef cattle and one in three cattle herd harbored the pathogen in the 
study area. In some studies, all herds tested were positive. In agreement 
to the findings of this study, a meta-analysis study from North America 
reported that the prevalence of O157 was 10.68% in fed feedlot and 
1.79% in adult dairy cattle [76]. The design of many publications 
searched in this study lacked randomization and convenient sampling 
was used in study animal selection; thus, our result can overestimate 
(or underestimate) the true population parameter. E. coli O157:H7 
and other STEC are shed transiently in the feces. As prevalence is a 
snap-shot of detecting the presence of infection, the true population 
parameter can be underestimated.

Prevalence was significantly higher in beef than dairy cattle in this 
study. However, the findings of a good number of studies reviewed 
showed prevalence was higher in dairy than beef cattle. For STEC 
O157, a review of global testing of cattle feces showed prevalence 

https://www.sciforschenonline.org/journals/epidemiology-public-health/
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Figure 1: PRISMA flow diagram.
n1 stands for prevalence of cattle, hide, and carcass contamination publications; n2 prevalence of environmental sample publications; n3 
concentration publications).

ranges of 0.2-27.8% in beef cattle [77], and 0.2-48.8% in dairy cattle 
[78]. In Belgium, the highest prevalence of Escherichia coli O157 was 
found on dairy cattle farms (61.2%), followed by mixed dairy and beef 
(44.4%), beef (22.7%), and veal calf farms (9.1%) [79]. In Canada, an 
E. coli O157:H7 prevalence of 62.1% was reported in a dairy farm 
[78]. The prevalence was lower (0.6%) in production systems of 
low animal density than when animals were kept under systems of 
high animal density (2.5%) [77]. From these reports authors argue 
that increased prevalence of E. coli O157:H7 in feedlot cattle in the 
United States of America is related with management programs than 
animal type. Different management programs which include bedding 
and pen surfaces handling, manure management, biosecurity, cattle 
grouping, transportation and lairage, stress, feeding plan, and watering 
program is reviewed [8]. High deposition of organisms on pen floors, 
watering troughs, or open pasture facilitates infection particularly in 
overcrowded animals.

Hide and carcass prevalence
More than half of hide samples tested were found to be contaminated 

with E. coli O157:H7 in this study. The level of hide contamination was 

five times the prevalence, showing a connection between increased 
hide contamination and the hygiene of slaughter practices. Thus, safe 
disposal of gut contents and hygiene at slaughtering plants can reduce 
hide and carcass contamination.

Environmental contamination
Samples found contaminated were produce and different water 

sources (watering troughs, ponds, irrigation, and watersheds). 
Pathogen survivals in water troughs, pen floors, and in the immediate 
environment of animals are significant factors for infection. Water 
troughs and contaminated pen floors appeared to be particularly 
influential sources driving  E. coli  O157:H7 population dynamics 
[28,61]. Based on mathematical model assumptions, contaminated 
drinking water was the most important pathway of E. coli O157:H7 
transmission to cattle [80]. Water is the major source of contamination 
for fresh produce [81]. Survival of culturable E. coli O157 for at least 
245 days in microcosm sediments is reported [82]. The bacterium 
can remain alive in manure for 100 days [83]; or more than six 
months if the manure is kept under anaerobic condition at 16°C 
[84]. A few Restriction Endonuclease Digestion Patterns (REDPS) 

https://www.sciforschenonline.org/journals/epidemiology-public-health/
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Figure 2: Forest plot of the prevalence in feedlot cattle.

persist and dominate over the entire feeding period in feedlot 
operation highlighting the importance of the farm environment, 
and not necessarily the incoming cattle, as a source of infection [85]. 
Water, hence, can be an easy but important environmental target for 
intervention against E. coli O157:H7 and other STEC transmission.

Concentration
The concentration of E. coli O157:H7 in feces taken directly 

from the terminal gut ranged from 900 to 300,000 organisms in one 
gram of feces. The amount is enough to contaminate other animals, 
hide, carcass, pen floors, and water troughs. At least 104 cfu/g of 
EHEC in cattle feces are associated with contamination of hides, 
and subsequently, carcasses, and beef [74]. Less than 700 organisms 
were sufficient for E. coli O157:H7 to establish illness in humans [86]. 
Authors recommend that a pooled estimate generated using additional 

data is required to generate a representative concentration value for 
the country.

Regional difference
The Northeast region is different from the other three regions in 

all individual, herd, and environment prevalence. Climate, geographic 
location, or management differences are apparent between the 
Northeast and other regions. However, a rigorous study is needed to 
explain the observed difference.

We have learned three lessons from the study. In the estimation of 
the overall effect, an increased heterogeneity index (I2) was observed. 
Results of meta-regression showed region was found significant 
covariate accounting for 68.25% of heterogeneity (p=0.0002). Year of 
study and sample size were not significant covariates (p>0.05); however, 
year of study explained 9.77% of heterogeneity. One study with a large 

Prevalence 
type

Production 
system Sample Positive Sample size Prevalencerangea Pooled 

prevalence (%)

95% 
Confidence 

Interval

References

Individual 
prevalence Feedlot Feces 2,732 23,048 0.71-28.0 10.96 4.2-18.8 [40,41,43-46,48,56-61,63]

Dairy Feces 211 10,188 0.3-5.5 1.5 0.11-3.5 [29,42,48,59,62-67]

Herd 
prevalence Beef and dairy Feces 127 377 7.1-100 31.7 10.2-55.5 [29,40-42,44,57,60,63,66,67]

Hide 
prevalence

Beef and dairy 
farms Hide 5864 10,700 11.0-71.0 54.7 41.7-67.5 [30,34,47,49,50,57,68,69]

Carcass 
prevalence

Beef and dairy 
farms carcass 1497 6570 3.0-43.0 21.3 9.7-34.2 [34,47,49,50,57,68,69]

Environment
prevalence

Beef, dairy, and 
ranches

Water-
trough 41 1631 1.7-5.3 2.4 0.39-5.1 [29,64,67,70]

Ponds, irrigation, 
and public places

watersheds 
and water 
sediment

101 2038 4.0-68.2 4.6 0-12.2 [70,71]

Vegetable farms produce 114 1402 7.9-25.0 8.1 0-29.6 [72,73]

Table 3: Prevalence of Shiga toxin-producing Escherichia coli O157:H7 in individual cattle and herds, environment, hide and carcass using IVhet model.

aRanges of prevalences from indicated publications reported before pooling.
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Prevalence
0.1

Study 

Doane et al 2007  

Arthur et al 2009   

Laegreid et al 1999   

Reinstein et al 2007  

Jacob et al 2011   

Overall  
Q=83.57, p=0.00, I2=89%

Sargeant et al 2003   
Greenquist et al 2005   

Callaway et al 2006   
Keen et al 2006   

Reinstein et al 2009   

    Prev (95% CI)          % Weight

   0.05  (  0.03,  0.07)      2.4

   0.05  (  0.03,  0.08)      1.8

   0.07  (  0.05,  0.09)      5.1

   0.07  (  0.06,  0.09)      5.4

   0.08  (  0.06,  0.10)      3.5

   0.10  (  0.07,  0.13)    100.0

   0.10  (  0.10,  0.11)     61.5
   0.11  (  0.09,  0.13)      4.3

   0.12  (  0.08,  0.16)      1.4
   0.13  (  0.11,  0.15)      6.7

   0.14  (  0.12,  0.16)      8.0

 
Figure 3: Forest plot of sensitivity analysis the prevalence in feedlot cattle after four outliers were excluded.

sample size was found influential. The major drawback of I2 is its undue 
sensitivity to large sample sizes. Presence of heterogeneity indicates 
a difference among the studies pooled. It is advised that only similar 
studies are pooled and analyzed. The authors experienced a difficulty 
in finding a good number of publications satisfying assumption of 
homogeneity of results under set inclusion and exclusion criteria. 
Long time span of records published from 1980-2019, states, study 
design, and sample collection (swab and fecal grab), are the sources 
of heterogeneity. The increased heterogeneity of results observed 
in this study, in spite of rigorous selection criteria applied, calls for 
standardization of study designs in future investigation of STEC O157 
serotypes. However, publication bias wasn’t observed (Figure 4). The 
second lesson was that in the United States of America much attention 
is given to E. coli O157:H7 serotype. Recent reports increasingly show 
recognition of non-0157 STEC as a cause of EHEC human illnesses. 
ACDC report showed that 64% of all STEC infections in the United 
States are caused by non-O157 STEC [87]. Similarly, the total number 
of illnesses was higher in non-O157 STEC than E. coli O157:H7 [88-
91]. Consequently, the six non-O157 serotypes (O26, O103, O111, 

O121, O145, and O45) are declared food adulterants [92]. In a study 
conducted in California, Cooley MB, et al. [70] reported a prevalence 
of 37.9% non-STEC in cattle, which is five-fold more than O157:H7 
(7.1%). The authors used three methods of culture modifications, 
O-typing ELISA (Enzyme Linked Immunosorbent Assay), Multilocus 
Variable Number Tandem Repeat Analysis (MLVA), and ompA gene 
sequencing in their investigations. Hence, the authors recommend 
extending study to non-O157 STEC epidemiology, shedding, and 
disease history. The last lesson learned was that most of the studies 
rarely used epidemiological study designs. To be valid and applicable 
to the general population, investigators must incorporate a component 
of randomization in their research methods.

The prevalence outputs obtained from this study are valid estimates 
closer to the population parameter on account of rigorous inclusion 
and exclusion criteria set, large sample size, effect model selected, 
and sensitivity analysis, not withstanding increased I2. Hence, the 
outputs can be used for microbiological risk assessment, sample 
size calculation, economic analysis, and decision analysis for E. coli 
O157:H7.

Sample type Production system Sample sizea Concentration
(cfu/g or cfu/100 cm2) References

Feces Beef 122 1·6 × 103 cfu/g (median) [69]

Dairy 16 2.0 × 103 -1.0 × 105 cfu/g(range) [42]

Feedlot 200 9.0 × 102 -3.0 × 105 cfu/g (range) [74]

Dairy 1 7.9 × 103 cfu/g (maximum) [49]

Hide Beef processing plant 86 9·8 × 103 cfu/100 cm2 (maximum) [69]

8·0 × 101 cfu/100 cm2 (median) [69]

Beef processing plant 245 4.0 × 101 -4.0 × 103 cfu/100 cm2 (range) [47]

Dairy 1 5.0 × 100 cfu/1,00 cm2 (maximum) [49]

Carcass Beef processing plant 40 4·6 × 101 cfu/100 cm2 (maximum) [69]

2.0 × 100 cfu/100 cm2 (median) [69]

Beef processing plant 40 1.0 × 100 -1.89 × 102 cfu/100 cm2 (range) [47]

Feedlot surface area Feedlot 40 3.6 × 105 cfu/g of soil (average) [75]

Table 4: Concentration of E. coli O157:H7 in cattle feces, hide, carcass, and feedlot surface area.

aEnumerable sample sizes.
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Conclusion
More than one out of ten beef and close to one-third of cattle herds 

shed E. coli O157:H7. In addition, at least one-fifth of carcass samples 
harbored the pathogen. The risk of contamination of animals, the 
environment, food, and humans in the United States of America due 
to E. coli O157:H7 is clearly evident. Pre-harvest control strategies 
(antimicrobials, vaccination, treatment with probiotics, administration 
of bacteriophages, and modification of the diet) are limited in 
reducing shedding. In both beef and dairy, on-farm management 
activities geared to achieve hygiene of pen surfaces, bedding, lairage, 
transportation, water trough, and feed handling are thus recommended 
for best outcome. Proper manure removal is critical. Avoidance of 
stress in beef cattle operations reduces colonization of the gut and 
thence eliminates or minimizes shedding to a minimum. To effectively 
protect the public from foodborne illnesses caused by Escherichia coli 
O157:H7, all control strategies should target cattle, the most important 
reservoir host.
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Figure 4: Doi plot displaying publication bias in the individual prevalence of feedlot cattle based on the IVhet model.
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