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Abstract
The acceleration in the rate of chronic diseases that involve insulin resistance has become of global concern. The rate of the most prevalent 

chronic disease such as cardiovascular disease is linked to the metabolic syndrome, non alcoholic fatty liver disease (NAFLD) and other chronic 
diseases that include obesity, diabetes and neurodegenerative diseases. The gene-environment interaction in Western countries indicates 
that with urbanization access to food and its content may lead to induction of epigenetic alterations and identify the gene Sirtuin 1 (Sirt 1) 
to be responsible for the increased risk for insulin resistance and NAFLD relevant to Type 1, Type 2 and Type 3 diabetes in these countries. 
Nutrigenomics is linked to neuron and liver telomere maintenance, cell division and tissue growth and has become important with essential 
nutrients that regulate Sirt 1 function important to prevent NAFLD in individuals with diabetes. Nutrigenomic diets, exercise, drugs and lifestyle 
changes regulate Type 3 diabetes with neuron Sirt 1 transcriptional responses associated with DNA modifications that regulate brain insulin 
resistance relevant to NAFLD and diabetes.
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Background
In Western countries and third world countries the global obesity 

epidemic has been reported to effect at least 10% of the global population 
with projected health care costs to obesity related medical expenses 
reported to be 344 billion dollars to the year 2018 and may account for 21% 
of health costs in the United States. The acceleration in the rate of chronic 
diseases that involve insulin resistance has also become of global concern. 
The rate of the most prevalent chronic disease such as cardiovascular 
disease [1-4] is linked to the metabolic syndrome and non alcoholic fatty 
liver disease (NAFLD) and environmental factors such as stress, anxiety 
and depression are important to consider with the global increase in other 
chronic diseases that include diabetes and neurodegenerative diseases.

In 2013 the world health organization (WHO 2013) indicated that the 
number of global deaths (63%) included cardiovascular disease (48%), 
cancer (21%) and chronic respiratory conditions (12%). Nutritional 
and anti-aging therapies may prevent accelerated aging involved in 
the global obesity epidemic that currently involves various endocrine 
and chronic diseases in Western populations. Obesity and diabetes 
are defined as endocrine disorders with the medical conditions such 
as hyperinsulinemia involved with hormonal imbalance with various 
inflammatory complications of organs such as the liver, brain, thyroid, 
parathyroid, adrenal gland and pancreas [5,6]. Stress, fatigue, anxiety 
and depression are closely linked to chronic diseases and the molecular 
mechanisms that involve the apelinergic pathway have become important 
to Type 3 diabetes and neuroendocrine disease with theinduction of 
insulin resistance that lead to obesity and diabetes [7-12]. Metabolic 
diseases such as cardiovascular disease and neurodegeneration are 
associated with accelerated aging process and involve alteration in 

blood lipids such as cholesterol and triglyceride with a decrease in high 
density lipoprotein (HDL) [13-16]. Anxiety disorders effect mental 
health and induce changes in the brain associated with plasma hormone 
dysregulation and alterations in the biological clock especially in tissues 
such as the liver, adipose tissue and brain.

The gene-environment interaction in Western countries indicates 
that with urbanization [17] and access to food and its content may lead 
to induction of epigenetic alterations that are associated with lipid and 
glucose dyshomeostasis with increased risk for insulin resistance relevant 
to Type 1, Type 2 and Type 3 diabetes and obesity in these countries. 
Diets that contain various organic pollutants with overnutrition lead 
to abnormal xenobiotic metabolism [18-22] with marked effects on 
DNA strand breakage with cell apoptosis. High calorie diets, exercise 
and lifestyle changes regulate transcriptional responses with DNA 
modifications that include DNA methylation, histone tails, chromatin 
and micro RNA (short ribonucleic acid gene regulators)that regulate DNA 
expression and promote chronic disease susceptibility (Figure1). The 
gene environment interaction now identify the nuclear receptor Sirtuin 
1 (Sirt 1)that regulates appetite [23] to be involved in the induction of 
insulin resistance and Type 3 diabetes and involve alterations in nuclear 
receptors, micro RNA with chromatin remodelling [24] that are now 
closely associated with obesity, diabetes and neurodegenerative disease.

Sirtuin 1 contributes to the Post-Transcriptional 
Dysregulation in Type 1, Type 2 and Type 3 Diabetes

Nutritional research has concentrated on the identification of nutrient 
sensing diets that provide regulation of histone deacetylases (HDAC) 
that are involved in epigenetic control of gene expression that controls 
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metabolic and tissue glucose and cholesterol homeostasis [7,14,17]. 
Sirt 1 is a NAD+ dependent protein deacetylase and is involved in 
the deacetylation of the nuclear receptors (Figure 1) with its critical 
involvement in insulin resistance [25]. The anti-aging protein Sirt 1 and 
cell senescence has been closely linked to telomere biology and global 
DNA repair which provides mechanistic explanations for Sirt 1 functions 
in the protection of DNA damage, and thus genomic stability [26,27] with 
relevance to Type 1, Type 2 and Type 3 diabetes. Anti-aging strategies 
that target telomere shortening and brain glucose dysfunction in obesity 
and diabetes are of particular interest to biological aging since telomere 
shortening has been associated as an early risk for dementia and Type 3 
diabetes.

In calorie restriction regulation of the Sirt 1 gene involved in 
lifespan and aging has now become essential therapy for glucose and 
cholesterol maintenance with reversal of chronic diseases such as obesity, 
diabetes and neurodegenerative diseases in global communities [24]. 
Considerable interest in chronic diseases of the central nervous system 
that include neurodegenerative diseases such as Parkinson’s disease 
(PD) and Alzheimer’s disease (AD) may provide a useful model for the 
prevention and management of various chronic diseases. Risk factors 
such as diet and lifestyle indicate that Sirt 1 dysregulation is important to 
liver and metabolic health [24] and central to Type 3 diabetes since Sirt 
1 is involved in neuron loss [28] associated with insulin resistance and 
neurodegenerative disease.

In Figure 2 a summary is shown of the relevance of Sirt 1 in the genetic 
regulation of diabetes. HLA class I, II genes and genes of the HLA region 
of chromosome 6 have also been shown to be involved greatly with the 
risk for Type 1 diabetes (HLA-DR, DQ and DP). In caucasian populations 
contribution by DQA1and DQB1 haplotypes, linkages to DRB1*03 and 
DRB1*04 haplotypes have been associated with Type 1 diabetes. Other 
ethnic groups such as African, Americans, Japanese and Chinese specific 
haplotypes have also been associated with Type 1 diabetes [29]. An interest 

in global chronic diseases has identified Sirt 1 dysregulation to involve 
Type 1 diabetes with nutritional regulation of Sirt 1 important to assist 
with glucose homeostasis in these Type 1individuals. Sirt 1 regulation 
of the MODY gene via transcription factors hepatocyte nuclear factor 
1(HNF-1) and HNF-4 or HNF1/HNF4 complex [30-32] has been shown 
with evidence of Sirt1/HNF-4genetic regulation of liver and pancreas in 
Type 1 diabetes.

In Type 2 diabetes more than 150 genetic loci are associated with the 
development of diabetes and 50 candidate genes have shown to play 
a major part in the development of the disease and include genes such 
as peroxisome proliferator-activated receptors, ATP-binding cassette 
transporter sub-family C member 8, KATP mutations and Calpain 10 [29]. 
These genes are involved in pancreatic β cell function, insulin action and 
glucose metabolism in metabolic conditions (Figure 2). In Type 2 diabetes 
the relevance of stress to defective apelinergic pathways that involve the 
pancreas, liver, kidney and brain have been identified [7] with severity 
of diabetes associated with poor insulin actions and glucose regulation. 
Sirt 1 plays an important role in the regulation of the apelinergic pathway 
relevant to Type 2 diabetes with connections to brain insulin resistance 
(stroke, dementia, AD) and Type 3 diabetes [7]. Individuals with Type 
1 and Type 2 diabetes involve early and accelerated organ diseases of 
the brain when associated with Type 3 diabetes and the liver with Sirt 
1 repression closely involved with insulin resistance in these individuals.

A single gene effect associated with Sirt 1 repression versus multiple 
diabetic genes effect may indicate either the interaction of the diabetic 
individual is sensitive to gene-environments events that involve diet and 
lifestyle changes. Cellular miRNA have become important since they may 
be regulated by diet, drugs, xenobiotics, stress and anxiety (environment) 
that may be relevant to the stress sensitive Sirt 1 [7]. Nutritional 
intervention is now critical early in life to maintain normal Sirt 1/
fibroblast growth factor 1 regulation of circadian rhythm that maintain 
brain-liver pathways and glucose homeostasis [32,33]. Sirt 1 regulation 

Figure 1: High calorie diets, stress, exercise and lifestyle changes regulate transcriptional responses with DNA modifications that regulate neuron 
micro RNA and DNA expression and promote chronic diseases associated with obesity, diabetes (Type 1,2,3) and neurodegenerative disease. The 
gene environment interaction indicates that the stress sensitive anti-aging gene Sirtuin 1 is downregulated with effects on drug therapy linked to the 
induction of Type 3 diabetes.
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targets various transcription factors peroxisome proliferator-activated 
receptor-gamma co-activator (PGC-1 alpha), p53 tumour suppressor 
protein, pregnane x receptor (PXR) to adapt gene expression to metabolic 
activity, insulin resistance and inflammation [24]. Effects of feeding on Sirt 
1and p53 interactions are involved in nuclear-mitochondria interactions, 
mutations, cell death (apoptosis) or permanent cellular senescence [24]
with relevance to Sirt 1 deacetylation of p53 that determine DNA repair 
critical for maintenance of cell glucose homeostasis [34,35].

Effects of p53 on gene regulators include micro RNA (miRNAs) 
[36,37] and their role in the induction of obesity [38] and diabetes [39-41] 
indicates altered expression of multiple miRNAs in metabolic tissues [42] 
Furthermore miRNAs such as miR-34a [43] and miR-122, miR-132 [44,45] 
that directly inhibit Sirt 1 are associated with poor activation of hepatic 
genes involved in glucose and lipid metabolism [46] with an increase in 
acetylated p53 involved with cell apoptosis and NAFLD [47,48]. The p53 
effects on miR-34a transactivation involve Sirt1 expression associated 
with insulin resistance and the development of metabolic disease [49,50].

Nutrigenomics diets maintain Drug and Insulin Therapy 
with the Prevention of Type 3 Diabetes

Interest in the nature of food intake has increased since the nature of 
fat consumption (low or high) may require further evaluation and may 
contain xenobiotics with marked effects on neuronal apoptosis and 
neuroendocrine disease [17].The effects from environments in developing 
countries (urban inhabitants) contain xenobiotics (soil, water, air) that 
may contribute to Type 3 diabetes. High fibre diets [51] that contain 
fruit and vegetables have become important for the treatment of NAFLD 
with the reduction in the absorption of lipophilic xenobitics with the 
prevention of Type 3 diabetes. Activation of hepatic nuclear receptors 
such as the Sirt1/pregnane X receptor (PXR) by calorie restriction (low 
glycemic index/fatty acid consumption) are important to the science of 
nutrigenomics [17] with relevance to activation of hepatic xenobiotic 
metabolism connected to the prevention of neuronal apoptosis. 

The consumption of fruits such as apples that contain pyruvic acid (450 
mg/apple) an antioxidant and an activator of Sirt1 [52-54] is essential for 

diabetes treatment. Other brain nutrients to prevent Type 3 diabetes to 
maintain brain glucose homeostasis include phosphatidyl inositol and 
leucine both important for the maintenance of Sirt 1 related neuron 
function. Exercise and heavy work activities may rapidly deplete brain 
pyruvic acid, leucine and phosphatidyl inositol with the acceleration of 
brain insulin resistance [55]. Excessive ingestion of vegetables not more 
than (1-2 gm/day) may cause suprachiasmatic disorders with accumulation 
of brain phytosterols with aging [51]. The nature of phytosterols that 
regulate liver cholesterol metabolism are critical to prevent and reverse 
NAFLD with HDL cholesterol metabolism closely linked to phytosterol 
ingestion [51]. Specific polyphenols found in vegetables and fruits need 
careful evaluation since high doses may cause increased oxidative stress 
with toxicity to the liver and induction of NAFLD and chronic disease 
[13]. Nutritional science that involves the maintenance of Sirt 1 regulation 
of DNA repair require effective function of neuronal telomeres and 
ingestion of therapeutic foods is essential to prevent Type 3 diabetes [29]. 
Nutrigenomic diets have become important to prevent Sirt 1 inhibition 
with diets rich in palmitic acid and alcohol discouraged and both are 
inhibitors of Sirt 1 [29]. Butyric acid is a histone deacetylase inhibitor 
used in the treatment of diet induced insulin resistance [56,57] with doses 
required to reduce amyloid beta protein aggregation in AD but butyric 
acid may completely inhibit the Sirt 1 deacetylase activity essential for cell 
telomere growth and mitochondria survival [24].

Sirt 1 is essential for maintenance of insulin therapy in diabetes and 
aging [58-60]. In diabetes interest in the hepatic drug transport has 
accelerated with toxic effects of drugs on insulin therapy. More than 600 
drugs (eg: Asprin, Warfarin, Furosemide, Atrorvastatin, Clopidogrel, 
Levothyroxin Acetaminophen, Cholecalciferol, Simvastatin) have been 
listed that corrupt insulin therapy with drug-drug interactions involved in 
diabetes [61]. Interests in nutrigenomic diets and drug transport indicate 
the importance of Sirt 1 in brain to liver drug transport pathways via 
the blood brain barrier [62-66] and require hepatic Sirt 1 regulation of 
glucose, drug, cholesterol and bile acid metabolism [24]. Diabetes and 
hepatic and brain amyloid beta metabolism [29] are connected to drug 
metabolism (Figure 3) and defective hepatic drug metabolism may be 

 
Figure 2: The genetic regulation of Type 1 and Type 2 diabetes is associated with the gene expression of Sirt 1 in global populations. A single 
gene effect associated with the repression of the anti-aging gene Sirt 1 versus multiple diabetic genes may indicate the interaction of the diabetic 
individual to gene-environments events such as unhealthy diets and stress that involves Sirt 1 dysregulation of glucose and cholesterol in the brain 
and peripheral tissues.
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the primary defect in diabetes with acceleration of neuronal apoptosis by 
toxic brain amyloid beta metabolism secondary to Type 3 complications 
associated with Type 1 or Type 2 diabetic disease [29].

In recent finding approximately 40 miRNAs have been shown to be 
dysregulated [67-69] in diabetic individuals. The identification of specific 
dietary supplements that may regulate DNA or microRNA metabolism 
has become important with nutritional interventions essential for rapid 
reversal for the severity of diabetes. Diets that do not contain therapeutic 
food supplements promote Sirt 1 downregulation and disturb p53/mi 
RNA metabolism [70] with relevance to toxic effects of drugs on insulin 
therapy in diabetes. Several miRNA have been shown to effect drug 
metabolism with nuclear receptors involved in the regulation of drug 
and xenobiotic metabolism [71]. Elevated xenobiotic cell levels have been 
shown to interfere with miRNA expression [72] with relevance to nuclear 
Sirt 1 activity.

Nutrigenomic diets activate Sirt 1 and accelerate the hepatic metabolism 
of toxins such as bacterial lipopolysaccharides (LPS) and mycotoxins that 
inhibit Sirt 1 and promote insulin resistance with relevance to brain, liver 
and pancreatic disease [73]. Nutrigenomic diets that do not contain LPS 
have become important since LPS effects on membrane asymmetry [74,75] 
involve membrane calcium levels/flux that determine severity of insulin 
resistance, abnormal drug transport with amyloid beta dyshomeostasis 
[13] connected to Type 3 diabetes.

Conclusion
Nutritional interventions have become important for the reversal of 

Type 3 diabetes associated with accelerated aging and linked to Type 1 

and Type 2 diabetes. Therapeutic foods that contain anti-aging dietary 
components activate the anti-aging gene Sirt 1 with relevance to cell 
glucose dyshomeostasis linked to heart, pancreas, liver and brain diseases. 
Nutrigenomic diets that activate hepatic Sirt 1 improve drug metabolism 
with relevance to insulin therapy in diabetes. Lifestyle changes such as 
drug, environment, diet and stress are involved with the metabolism of 
therapeutic nutrients that are depleted from the brain with extended 
workload/exercise treatment periods associated with the downregulation 
of brain nuclear receptors with relevance to Type 3 diabetes and the 
severity of insulin resistance in various global communities. 
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