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Abstract
This paper reviews a revolutionary PRG (pre-reacted glass ionomer) filler technology-which was developed as a new category as “Giomer”. 

This review is the first article that covers comprehensive information about the evolution, fabrication of PRG fillers, types of PRG particles, 
biological properties, physical properties, optical properties and applications of giomer based on numerous studies available.
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Introduction
The search for a material that has the fluoride releasing capability of 

conventional glass ionomer and the durability of composites led to the 
introduction of polyacid modified composite or compomers by Denstply 
in 1993. 

Compomer is mainly composed of resin matrix with glass fillers and 
dehydrated polyalkenoic acid. Their advantage being that they undergo 
initial light activated polymerization which provides early strength 
development followed by a slow acid base reaction because of hydration of 
the dehydrated polyalkenoic acid by absorption of water after placement 
into the cavity. But the fluoride release even though was higher than 
conventional composites was lesser then the conventional glass ionomer 
and has no fluoride recharge capacity.

To overcome these disadvantages recently a new category of hybrid 
aesthetic restorative material which differs from both resin modified glass 
ionomer and composites has been introduced by Shofu Inc. (Kyoto, Japan 
2000 known as GIOMERS, in which they created a Stable Glass-ionomer 
phase on a glass core in which they induced an acid-base reaction between 
fluoride containing glass and polycarboxylic acid in the presence of water-
developed as Pre-Reacted Glass-ionomer (PRG) filler.

Robert et al. first remarked the fact that the fluoride releasing mechanism 
of glass ionomer cement was derived from its acid-base reaction phase 
between ion leachable fluoroaliminosilicate glass and polyalkenoic acid in 
permeable polyalkenoate matrices, and newly developed a revolutionary 
Prereacted glass ionomer (PRG) filler technology [1]. So the fluoride ion 
release was because of the formation of the acid base reaction phase on 
the surface of the glass core. This PRG technology was applied to the filler 
component of resin composite materials to provide a bioactive result that 
released and was recharged with fluoride-like a traditional glass ionomer 
cement-all the while maintaining the original physical properties of the 
resin composite system [2,3].

Giomer
Giomer is a fluoride-releasing, resin-based dental adhesive material 

that comprises PRG fillers.

Fabrication of PRG fillers
PRG fillers are fabricated by the acid-base reaction between 

fluoroalumino –silicate glass (FASG) and polyalkenoic acid (PAA) in the 
presence of water to form a wet siliceous hydrogel. After freeze-drying, the 
desiccated xerogel was further milled and silanized to form PRG fillers of 
a specific size range [4].

Types of PRG fillers
The PRG-fillers depending on the degree of reaction of the glass 

ionomer with the acid are divided into two types, and are included into 
the formulation of giomer products [5].

S-PRG: The reaction is detected in surface-loans and are called surface 
reaction (surface reaction type, S-PRG fillers) 

F-PRG: The reactions proceeded throughout and called are complete 
reactions (full reaction type, F-PRG fillers), to make the production of 
F-PRG- the presence of large quantities of water. The use of both types 
of PRG fillers promote rapid fluoride release through a ligand exchange 
within the prereacted hydrogel[6] So the F-PRG, fillers would release a 
huge amount of fluoride as the core of the particle is completely reacted 
unlike in the S-PRG fillers, the F-PRG would degrade faster than S-PRG 
fillers. The further advantage of S-PRG is that it releases five ions other 
than fluoride which have beneficial properties. The ions are Al, B, Na, Si, 
Sr ions [7,8]. 

Modified S-PRG: Recently, improvement on the PRG technology has 
been developed that resulting in the development of Modified “S-PRG 
filler” which consists of a Three-layered structure with an original glass 
core of multifunctional fluoro-boro-alminosilicate glass and Two-surface 
layers that form a pre-reacted glass-ionomer phase on the surface of a 
glass core and a reinforced modified layer that covers the surface of pre-
reacted glass-ionomer phase. This trilaminar structure forms a type of 
stable glass ionomer which allows ion release and recharge to take place, 
while protecting the glass core from the damaging effects of moisture, 
greatly improving long-term durability. Fujimoto demonstrated that the 
new fluoride releasing restorative system with modified S-PRG filler also 
releases the F-ion as well as other ions such as Al, B, Na, Si, and Sr [8].
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The benefits of S-PRG filler
As the S-PRG fillers release ions other than fluoride, the serve a range 

of benefits, (i) Fluoride release and fluoride recharge, (ii) formation of acid 
resistant layer [9] (iii) reinforcement of tooth structure [10] (iv) antiplaque 
effect  [11] (v) remineralization of dentin [12] (vi) acid buffering capacity 
and reduce acid production by acidogenic bacteria [8].

Properties of GIOMER: The properties of giomer need to be 
understood under (i) Biological, (ii) Physical / Mechanical properties, (iii) 
Optical properties

Biological properties: Antiteridonike effect – Fluroide release and 
recharge, Ion release & modulation effect, Buffering of lactic acid, 
Antibacterial properties, Adherence of streptococcus mutans, PRG and 
biofilm, Mineral induction, Cytotxicity

Fluoride release
Study by Itota et al. has shown that the amount of total and free fluoride 

release from Giomer was higher than Compomer and resin composite 
and concluded, the extent of glass ionomer matrix of glass filler play an 
important role for fluoride releasing and recharging abilities of the resin 
based materials [13]. Also it has been shown that giomers and compomers 
do have the initial fluoride burst effect of the glass ionomer cements [14]. 
Gururaj 2011, Values of 1 ppm for fluoride release in artificial saliva were 
attained only with conventional GIC, resin modified GIC and giomer [15].

Fluoride recharge
Preston and Han reported that the ability of a material to exhibit fluoride 

recharge depends on its ability to retain fluoride [16]. The recharge ability 
is governed by the number of sites available within a material able to retain 
absorbed fluoride. So more the fluoride release, more sites are available 
and more is the fluoride recharge [17].

A study conducted by Naoum 2011, compared the fluoride release 
and recharge between different fluoride releasing materials and 
reported that the fluoride release and recharge was maximum for 
giomer products [18]. But Fuji IX Extra (glass ionomer) demonstrated 
greater fluoride release and recharge compared to the other three 
composite and giomer as well. This could be explained on the basis 
on resin matrix that is permeability, hydrophilic nature of matrix which 
encompasses the filler particles [18].

Difference in Fluoride Release before and after Recharge
Pre recharge release

Itota 2005 reported that, Beautiful showed the maximum release both 
in deionozed water and lactic acid and Greater fluoride release in lactic 
acid when compared to water is stated as “smart behaviour” [19]. Giomer 
have more release when compared to other fluoride releasing composites 
as the hydogel of S-PRG particles exhibited a higher permeability and 
porosity than resin matrices. This hydrogel provides Beautiful II with 
areas within the structure capable of greater fluoride uptake relative to a 
composite not containing a glass ionomer phase.

After recharge
Beautifil II, showed greater rerelease in water compared to acids. This 

may be due to the dissolving action of acid facilitating additional 
cation release from the filler. These cations have the capability to form 
fluoride complexes with fluoride ions introduced through recharge 
into the resin [20,21]. Such complexes are of greater molecular size 
than free fluoride ions and are may experience resistance to movement 
as well as increased retention time within resin matrix. A delayed 
release of such complex point to possible sustained release and enhance 
potential of recurrent caries [18].

Dijkman reported that, placement of unfilled resin over glass ionomer 
reduce the level of fluoride release by a factor of 1.5 to 4 times [22], It 
follows that the post recharge fluoride release from Beautifil II would 
be comparable and would potentially exceed the Plateau Release of 
glass ionomer that demonstrate caries inhibition. While the greater 
permeability and porosity of glass ionomer contributed to the significantly 
higher fluoride release, these characteristics also contributed to reduction 
in elastic moduli and hardness with aging [18].

Ion release and modulation effect
As stated earlier, the S-PRG fillers release six different ions, those being 

the Na+, BO3-, Al3+, F-, Sr2+, SiO2-.

Their functions being as follows in table 1.

Silicate ions – mineral induction
It was reported that Si seemed to promote hydroxyapatite formation 

as silica gel induced apatite nucleation on its surface. The surface silanol 
groups of hydrated silica gel interacted with the calcium and phosphorous 
ions from the surrounding environment, thereby generating biologically 
active apatite on the silica gel surface [23].

Alternatively, it was reported that Si ions released from bioactive glass 
particles were adsorbed on the substrate surface, thereby providing sites 
for heterogeneous apatite nucleation. Once nucleated, it will spontaneously 
grow to form a bone-like apatite layer [24].

For bonelike apatite coating on materials with complex shapes, it 
was reported that an apatite layer was formed when sodium silicate was 
used as a catalyst for apatite nucleation —whereby particular silicate 
oligomers with structures such as dimer, linear trimer, and cyclic tetramer 
contributed most to apatite nucleation [25]. On its contribution to dentin 
mineralization, it was reported that Si promoted dentin mineralization 
by a mechanism based on the condensation of silicic acid to oligomers. 
When a sufficient quantity of Si was adsorbed on dentin with anionic 
groups (SiO−), it acted as a nucleation centre for subsequent, increased 
Cap formation [26].

Modulation by ion release/ Buffering of acidic medium
The release rate of fluoride and other ions is controlled by a diffusion 

mechanism of the ions through the matrix and is influenced by myriad 
factors such as the duration of fluoride release, pH of the extraction 
medium, and the surface area and degree of erosive wear of the glass 
ionomer cement. On the effect of medium pH ion release behavior, acidic 
conditions are known to enhance the release of all ions [27]. Nonetheless, 
it must be pointed out that this enhanced release in acids is not uniform, 
but occurs to different extents for each ion [28].

Interestingly, despite these differences, ion release tends to lead to fairly 
uniform shifts in the pH of the extraction medium towards neutral [29]. 
In a study conducted by, Fujimoto in 2010 showed that, in lactic acid, the 
highest amount of ions released was observed for Sr, followed by F and 
Si. Similarly, B and Na showed a gradual increase in the amount of ions 
released as the ratio of solution increased [8].

The same study reported that S-PRG filler altered the pH values of both 
distilled water and lactic acid solution closer to neutral, regardless of their 
different pH levels before mixing. These results thus showed that S-PRG 
filler, like the conventional glass ionomer cements, had a modulation 
effect on acidic solutions. 

The acidic attack on glass ionomer cements has been shown to occur 
mainly on the gel phase rather than the unreacted glass cores, indicating 
a release of ions from the matrix phase of set cement. Nonetheless, acidity 
of the surrounding solution has been shown to degrade the glass cores of 
glass ionomer cements, thereby increasing the number of ions released. 
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In contrast, S-PRG filler-unlike glass ionomer cements-was relatively 
stable  in acidic conditions; On the clinical implications of S-PRG fillers, 
results of this study suggested that they could wield a two-fold impact: 1)
Able to release ions that contribute to tooth mineralization. 2) And have 
a modulation effect on the acidic conditions produced by oral cariogenic 
microorganisms. 

Giomer on Biofilm
Adherence of streptococcus mutans/Anti-plaque effect

The colonization of dental plaque by S. mutans plays a causative 
role in dental caries. Nishio and Yamamoto 2002, Found that fluoride 
released from S-PRG fillers was connected with the prevention of plaque 
accumulation on the surface of experimental resin composite containing 
S-PRG fillers [30]. Other commercial composite resins showed matured 
plaque on their surfaces after 24 hours compared to giomer. On the surface 
of a tooth restored using Beautifil II a “material film” layer is formed by 
saliva that is reported to minimize plaque adhesion and inhibit bacterial 
colonization. Although this “material film” layer may be removed by 
brushing, subsequent layers are reproduced by saliva. Therefore S-PRG 
filler has a function of inhibiting plaque accumulation.

Recently, an in vivo experiment showed that less dental plaque was 
formed on S-PRG-containing resin materials than on two alternative 
materials. In addition, the adherence of S. Mutans to the saliva-treated 
resin surface was significantly lower on the S-PRG-containing resin than 
that on the other two materials, despite none of the materials possessing 
significant bactericidal activity .From these results, we can conclude that 
S-PRG can inhibit S. Mutans in both solid resin and soluble forms [11].

Periodontal biofilm
Periodontitis is caused by periodontopathic bacteria such as 

Porphyromonasgingivalis, a black-pigmented, Gramnegative, 
asaccharolytic anaerobic bacterium [31]. P. Gingivalis has several biologic 
activities such as protease secretion and coaggregation [32]. The protease 
gingipain is reported to have suppressive activity on human neutrophils 
[33]. Gingipain is related to the growth promotion of P. gingivali. Gingipain 
is also associated with gelatinase activity which may cause periodontal 
tissue degradation [34]. P. gingivalis coaggregates with other oral bacteria 
such as Fusobacterium nucleatum, and the formation of these multistrain 
complex communities is an initial and critical step in the pathogenesis of 
periodontitis [35].

Effect of S-PRG on the coaggregation between P. gingivalis and 
F. nucleatum

F. nucleatum exhibits coaggregation with P. gingivalis. Coaggregation of 
periodontopathic bacteria is associated with bacterial attachment in the 
gingival crevice [36]. Recently, some metal ions were found to suppress 
the coaggregating ability of P.gingivalis and they are expected to inhibit 
the settlement of P. gingivalis in the gingival sulcus [37] S-PRG may also 
disturb the formation of advanced multistrain bacterial communities in 
the periodontal environment. The mechanism of these inhibitory effects is 

unclear and needs to be clarified. S-PRG is known to release various ions, 
including F−, Al3+,Sr2+, SiO3−, BO3 

3−, and Na+ [38].

Boron is known to have an antibacterial activity in cutaneous diseases 
and periodontitis and inhibits bacterial and fungal quorum sensing. [39-
41]. Quorum sensing is a key factor in biofilm formation, so inhibition 
of this function in Streptococci may be a good candidate mechanism 
underlying the actions of S-PRG. In P. gingivalis, the mechanism 
responsible for S-PRG actions may involve the control of metal salts 
and ions that regulate bacterial enzyme activity. Gingipains are known 
to require metal ions to achieve maximum enzyme activity whereas 
gelatinases are inhibited by metal salts. Thus, S-PRG may affect enzyme 
activity by modulating the concentrations of these metal salts and ions 
[42,43]. S-PRG eluate was found to have a suppressive effect on the 
BAPNA-hydrolyzing and gelatinase activities of P. gingivalis.

Giomer and Dentine Hyper Sensitivity
Tsubota et al. reported that S-PRG fillers have a superior, occluding 

effect on open dentinal tubules, thereby providing acid resistance to the 
underlying dentin. Fluoride and other minerals in concentrated release 
from S-PRG fillers may contribute to remineralization in the tubules and 
subsequently, occlusion over a long period [44].

Cytotoxicity
It has been revealed that the low initial pH of dental materials may 

lead to cytotoxic reactions [45,46] Since giomer employs prereacted 
glass ionomer technology, the fluoroaluminosilicate glass reacts with 
polyalkenoic acid in water prior to the inclusion into silica-filled urethane 
resin , it seems that the initial pH in giomer does not decrease as much as 
that of resin ionomer and conventional GIC [47]. A study demonstrated 
that the resin modified glass ionomers maintained a low surface pH for at 
least the first 60 min of setting [48]. Huang et al. had demonstrated that 
resin-modified glass ionomer cement was cytotoxic to cultured human 
gingival fibroblasts by inhibiting cell growth, attachment and proliferation 
[49]. In vitro study reported that Giomer composite is a non-toxic material 
for Human gingival fibroblasts [50].

Ii) Physical properties/mechanical properties

Flexural Strength: 130 Mpa

Shear bond strength =12.39 Mpa

Vickers Hardness: 62 Hv

Wear Resistance: 0.52 wt% [51].

Study conducted by Quader, reported the Comparative Compressive 
strength of Giomer, Compomer and Composite [52] (246 Mpa, 151.943 
Mpa and 146.265 Mpa respectively) 

Water absorption/ dimensional change
Dental restorative materials which are designed to release fluoride do 

so by diffusion of fluoride ions within an absorbed aqueous medium. 
Central to the ability to release fluoride, is an ability of a material to 

Ions Released by S-PRG Filler                                                Bioactive Properties
Na+ Sodium ion Water soluble/Induces the function of 5 other ions
BO3- Borate ions Bactericidal activity/ Promotion of bone formation, prevention of bacterial adhesion, antiplaque properties
Al3+ Aluminium ions Control of hypersensitivity
SiO2- Silicate ion Calcification of bone

Sr2+ Strontium ion Effect of neutralization and acid buffer, promotes formation of bone tissue and calcification/ Improves of acid 
resistance

F- Fluoride ions Creation of fluoroapatite (formation of acid insoluble crystals- caries prevention, antibacterial effect, Remineralization 
in decalcifies lesions 

Table 1: Ion release and modulation effect
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support diffusion of water whilst not having an excessively large value of 
water absorption.

McCabe [53] reported that the nature of the resin matrix is a 
fundamental parameter which may control not only the rate of diffusion 
of water but also the extent of water sorption into that part of the material 
structure.  In the giomer, the pre-reacted zone may affect only the surface 
of the glass or may consume almost the whole of the glass particles and 
this difference creates a further sub-division of products within this group. 
The reacted zones on the surfaces of filler particles may not only act as 
reservoirs for fluoride re-charging but may also contribute to an increased 
water absorption and diffusion. Such absorption can be tolerated provided 
that it does not lead to any deterioration in mechanical properties or 
produce excessive swelling or result in internal or radial pressure being 
generated when the material is confined, either within a cavity, or when 
being used as a luting agent.

McCabe also reported between giomer and compomer, only the giomer 
gave a substantial degree of swelling which suggests that the mechanism 
of water absorption for this material was able to overcome the restraining 
influence of the cavity [53]. The main difference in microstructure between 
the giomer and compomer materials is the presence of pre-reacted glass 
polyacid zones which become part of the filler in the giomer structure. It 
seems likely that these zones are responsible for generating the osmotic 
effect which leads to swelling and pressure. Whether or not the pressure is 
great enough to cause tooth fractures is uncertain as this will depend upon 
the cavity dimensions, residual tooth structure thickness [53].

Fatma, interestingly reported that, there is a direct relation between the 
degree of water sorption of different restorative materials and either color 
stability and marginal integrity [54].

Optical properties
The patented filler technology integrates the light transmission and 

diffusion properties of natural teeth. This enables naturally appearing 
restorations with even one layer. The filler structure has been developed 
to simulate the internal structure of natural teeth with ideal light 
transmission and optical characteristics. The moderate translucency and 
light transmission of enamel combined with the light-diffusion of dentin 
offers predictable aesthetics with a close shade match to natural teeth.

Excellent natural shade reproduction can be achieved with a chameleon 
effect, using a single shade that blends well with surrounding teeth making 
the restoration undetectable. In aesthetically demanding cases additional 
shades can be used to achieve exceptional results. Fluorescence close to 
natural teeth and Radiopacity of 3.4 Al : mm, exceptional radiopacity, 
70% greater than enamel and 200% greater than dentin  and 1.7 times of 
Enamel and 3 times higher than Dentin. It has a depth of cure: 5.9 mm.

Applications/Indications 
1. Restorations of Class III, IV and V cavities
2. Restorations of Class I cavities and selectively Class II cavities
3. Restorations in deciduous teeth
4. Base / liner under restorations
5. Fissure sealant
6. Undercut blockout
7. Restorations of fractured porcelain and composites
8. Restoration of cervical erosion and root caries
9. Repair of fractured incisal edges
10. Veneers and posts
11. Direct cosmetic repairs
12. Pulp capping agent

Conclusion
Giomer is a specialized restorative material which the properties of 

both glass ionomer cement and composites. The S-PRG technology not 
only provides the benefits of mechanical strength of a composite material 
but also provides release of multiple ions i.e Sodium ions, Silicate ions, 
Aluminium ions, Fluoride ions, Borate ions and Strontium ions which 
in turn provide multiple biological functions like Fluoride release and 
recharge, Anti-plaque effect, Anti Biofilm effect, Modulation of pH. Also, 
the aesthetics, light transmission, diffusion and fluorescence properties 
similar to natural teeth. It has unequalled radiopacity, color stability and 
excellent handling and material properties.
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