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Physiological Th Cell-B Cell Interaction
Antibodies are a central arm of the adaptive immune system. Highly 

diverse and equipped with diverse effectors functions, antibodies 
recognize and neutralize invading pathogens by various mechanisms. 
While B cells are the producers of antibodies, they depend on help from T 
helper (Th) cells for the generation of high affinity antibodies with distinct 
effectors properties. Thus, the establishment of a specific and efficient 
immune response requires a close collaboration of Th cells and B cells.

Th cells are generated in the bone marrow (BM) but mature in the 
thymus. Naïve Th cells leave the thymus and migrate to the periphery, where 
they may encounter antigenic peptides presented by antigen-presenting 
cells. Upon stimulation, Th cells proliferate and differentiate into one of 
several effector subsets that are distinct in phenotype and function. Best 
characterized among these are the pro-inflammatory Th1 cells, expressing 
interferon (IFN)-γ, and the Th2 cells, producing interleukin (IL)-4, IL-5 
and IL-13 [1]. Besides further effector lineages such as Th17, Th9 or Th22, 
several Th cell subsets with regulatory or suppressive functions - called 
regulatory T (Treg) cells-exist [2]. In addition, follicular helper T (Tfh) 
cells make up a unique population of Th cells distinct from extrafollicular 
and peripheral Th cells [3].

B cells develop and mature in the BM and subsequently migrate to 
the secondary lymphoid organs for the antigen-dependent phase of their 
development. While this process can be independent of T cell help, B 
cells conventionally engage in T cell-dependent responses and receive 
stimulation by CD40L, IL-4 and IL-21 from Tfh cells [4]. B cells further 
develop either into short-lived plasma cells, or into GC B cells that give 
rise to long-lived memory B cells and plasma cells. Importantly, the 
interaction with Tfh cells leads to the upregulation of activation-induced 

cytidine deaminase (AID), a DNA-editing enzyme and that initiates 
somatic hypermutation (SHM) and class switch recombination (CSR), the 
basic mechanisms creating high affinity antibodies with diverse effector 
functions [5].

Malignant Th Cell-B Cell Interaction
During their development, B cells may undergo malignant 

transformation, resulting in leukemia or lymphoma. Such transformations 
are frequently initiated by genetic events leading to aberrantly expressed 
proteins that promote growth and survival of the cells. The mutations, 
however, are usually not sufficient for cancer development. Instead, 
malignant B cells critically depend on interactions with cells of their 
microenvironment in order to survive and expand [6-8].

B cell malignancies often arise from GC B cells. Thus, the cells within 
GC represent key collaboration partners of malignant cells during 
pathogenesis, progression and relapse of leukemia and lymphoma. Besides 
non-hematopoetic cells such as mesenchymal stromal cells and fibroblasts, 
the GC harbors Tfh cells that support B cells in their physiological 
maturation and function. Interestingly, malignantly transformed B cells 
seem to retain their ability to interact with Th cells, and are therefore still 
capable of profiting from Th cell help. Thus, the same Th cell-mediated 
support that is crucial for an adaptive immune response can-when directed 
towards malignant B cells-promote lymphoma or leukemia (Figure 1).

Follicular lymphoma
Follicular lymphoma (FL) is an indolent lymphoma arising from GC B 

cells. Both non-hematopoietic cells as well as Th cells play a crucial role 
in supporting FL cell growth and survival [9]. Tfh cells from FL-affected 
lymph nodes express increased levels of IL-2, IL-4, IFN-γ and TNF [10] 
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and seem to support FL cells by IL-4 [11,12]. Besides cytokines, also 
ligation of CD40 with CD40L plays a role. FL cells showed an increased 
survival when stimulated by CD40 cross linking in vitro [13] as well as 
upon cognate interaction with Th cells [14], and it has been suggested that 
CD40L stimulation protects FL cells from TRAIL-mediated apoptosis in a 
NF-κB-dependent manner [15].

Burkitt’s lymphoma

Burkitt’s lymphoma (BL) is an aggressive B cell cancer, probably 
arising from GC B cells [16] BL is strongly associated with the Epstein-
Barr virus (EBV), even though the pathogenic mechanism is not clear 
[17,18]. The role of Th cells in BL development and progression is highly 
controversial. Several studies showed that EBV-specific Th cells could kill 
or limit proliferation of BL cell lines or EBV-transformed B cells [19-27]. 
Others, in contrast, have reported that EBV-specific Th cells induced B 
cell proliferation [28], and in several mouse models such EBV-specific Th 
cells were even required for lymphomagenesis [29-31]. Two studies found 
both a killing and supportive role for Th cells [32,33], suggesting that the 
function of Th cells in BL and other EBV-associated malignancies is likely 
to be context-dependent. 

Hodgkin lymphoma
In Hodgkin lymphoma (HL), infiltration of certain Th cell subsets is 

correlated with reduced overall patient survival [34,35]. Several cytokines 
seem to have a stimulatory effect on malignant cells in HL, one of which 
is the Th2 cytokine IL-13 [36]. Nevertheless, the source of this cytokines is 
still unclear. Thus, a direct role of Th cells in HL development or expansion 
remains to be demonstrated.

Chronic lymphocytic leukemia
Chronic lymphocytic leukemia (CLL) is a malignancy of mature 

clonal B cells, although the precise cell of origin is still under debate [37]. 
CLL cells proliferate in pseudofollicles in secondary lymphoid organs 
and in the BM, where they receive support from cells of the stromal 
microenvironment [38]. Th cells are actively recruited by CLL cells via 
chemokines to infiltrate such CLL pseudofollicles [39,40]. Recently, we 
found that these Th cells recognized antigen derived from autologous CLL 
cells and stimulated CLL cell activation and proliferation in an antigen- 
and CD40L-dependent manner in vitro and in an in vivo xenograft model 
[41]. Interestingly, the patients-derived CLL-specific Th cells had a Th1-
like phenotype, characterized by high IFN-γ secretion. IFN-γ upregulated 
CD38, a marker of poor prognosis in CLL in a mechanism involving 
IFN-γ-induced binding of the transcription factor T-bet to two consensus 
sites in 5 regulatory regions of the CD38 gene [42,43]. Consistently, T-bet 

expression in peripheral blood CLL cells significantly correlated with 
CD38 expression. Thus, it seems that Th cell promote the development of 
a more aggressive CLL subset through secretion of IFN-γ.

CLL cells express polyreactive and/or autoreactive BCR that provide 
a certain level of constant signaling [44,45]. However, sustained BCR 
signaling can induce anergy and apoptosis. In fact, CLL cells are 
considered to be autoreactive B cells that may be rescued from anergy by 
stimuli from the microenvironment [46,47]. Consistently, we found that 
stimulation by CD40L activated the kinase Syk in CLL cells, a component 
that is shared by the BCR and the CD40 signaling cascade. This suggests 
that Th cells contribute to CLL development by rescuing CLL cells from 
anergy through CD40L stimulation [48].

Multiple myeloma
Multiple myeloma (MM) is a malignancy characterized by the 

expansion of plasma cell-derived myeloma cells in the BM. The BM of 
MM patients displayed increased numbers of T cells [49], and CD40 
stimulation induced MM cell migration, which is associated with MM 
disease progression [50]. CD40 stimulation also triggered secretion 
of IL-6 by MM cells, which may mediate MM cell proliferation in an 
autocrine and/or paracrine mechanism [51]. In addition to CD40L-
mediated stimulation, MM-specific Th cells could also support autologous 
MM cells by secreting cytokines [52]. Very recently, we demonstrated that 
polyclonally activated allogeneic as well as autologous Th cells stimulated 
blastogenesis and proliferation of MM cells in a CD40L-dependent 
manner [53]. Together with the previous reports by others, this suggests 
that CD40L stimulations is a key mechanism in Th cell-mediated MM cell 
support, but cytokines like IL-6 and IL-17 are important components as well.

Concluding Remarks
The tumor microenvironment plays a key role in supporting malignant 

cells. In B cell leukemia and lymphoma, the malignant B cells seem 
to have retained the ability to receive help from their physiological 
interaction partners, the Th cells. Consistently, a cancer-supportive role 
for Th cells has been described in various types of B cell malignancies, 
although the detailed mechanisms remain to be determined. Effective 
anti-cancer therapies should involve targeting the cells of the tumor 
microenvironment. Thus, research efforts leading to the identification 
and characterization of tumor-promoting collaboration between Th cells 
and malignant B cells may provide novel strategies for therapies aiming to 
target the tumor microenvironment.
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